IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5490-d1678929.html
   My bibliography  Save this article

Impact Assessment of Natural Springs for Irrigation Potential in the Hilly Areas of Kashmir

Author

Listed:
  • Zubair Ahmad Khan

    (College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, Srinagar 190025, India)

  • Rohitashw Kumar

    (College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, Srinagar 190025, India)

  • Afzal Husain Khan

    (Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia)

  • Adil Majeed

    (College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, Srinagar 190025, India)

  • Mohmmad Idrees Attar

    (College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, Srinagar 190025, India)

  • P. Jagadesh

    (Department of Civil Engineering, Coimbatore Institute of Technology, Coimbatore 641014, India)

Abstract

The increasing water demand, fueled by rapid development activities, has significantly strained freshwater reservoirs. A comprehensive study was conducted in the Anantnag district of Jammu and Kashmir to determine the discharge rates of key water springs and assess their capacity to meet the crop water requirements within their respective command areas. The research focused on seven vital springs—Martand, Achabal, Malakhnag, Sherbagh, Verinag, Lukhbawan, and Kokernag—which are critical for domestic and agricultural purposes. The study was carried out from May to October 2018, employed the weir formula to measure spring discharge, and utilized evapotranspiration (ETo) calculations, integrating evaporation and rainfall data to estimate crop water requirements. The results revealed significant variability in spring discharge rates, with Verinag spring being the most productive at 4.55 m 3 /s, followed by Sherbagh at 1.97 m 3 /s, while Lukhbawan exhibited the lowest discharge rate at 0.17 m 3 /s. Springs such as Verinag, Martand, and Achabal demonstrated sufficient capacity to meet the water demands of crops in their command areas, highlighting their potential for sustainable agricultural support. These findings emphasize the importance of integrating surface–subsurface water dynamics in water resource management to ensure efficient utilization of these springs for both domestic and irrigation needs. The study provides valuable insights into optimizing spring water use to address increasing water demands in the region, contributing to sustainable development and resource conservation.

Suggested Citation

  • Zubair Ahmad Khan & Rohitashw Kumar & Afzal Husain Khan & Adil Majeed & Mohmmad Idrees Attar & P. Jagadesh, 2025. "Impact Assessment of Natural Springs for Irrigation Potential in the Hilly Areas of Kashmir," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5490-:d:1678929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    2. Martina Flörke & Christof Schneider & Robert I. McDonald, 2018. "Water competition between cities and agriculture driven by climate change and urban growth," Nature Sustainability, Nature, vol. 1(1), pages 51-58, January.
    3. Sandra L Postel, 2003. "Securing water for people, crops, and ecosystems: New mindset and new priorities," Natural Resources Forum, Blackwell Publishing, vol. 27(2), pages 89-98, May.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    2. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    3. Ti, Jinsong & Zhang, Zhao & Fan, Yikuan & Chen, Yi & Zhao, Haobin & Sun, Renfeng & Xu, Xiaobo & Dong, Wenshuai & He, Fan & Wei, Shuo, 2025. "Assessing variation, components, and driving factors of the water footprint for tobacco production in China," Agricultural Water Management, Elsevier, vol. 312(C).
    4. Hossain, Tasmin & Jones, Daniela S. & Hartley, Damon S. & Thompson, David N. & Langholtz, Matthew & Davis, Maggie, 2022. "Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US," Applied Energy, Elsevier, vol. 325(C).
    5. Yongping Yuan & Xiuying Wang & Verel Benson & Limei Ran, 2025. "An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments," Agriculture, MDPI, vol. 15(10), pages 1-16, May.
    6. Reidsma, Pytrik & Bakker, Martha M. & Kanellopoulos, Argyris & Alam, Shah J. & Paas, Wim & Kros, Johannes & de Vries, Wim, 2015. "Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level," Agricultural Systems, Elsevier, vol. 141(C), pages 160-173.
    7. Kirchner, Mathias & Schmidt, Johannes & Kindermann, Georg & Kulmer, Veronika & Mitter, Hermine & Prettenthaler, Franz & Rüdisser, Johannes & Schauppenlehner, Thomas & Schönhart, Martin & Strauss, Fran, 2015. "Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies," Ecological Economics, Elsevier, vol. 109(C), pages 161-174.
    8. Priyadarshini, Priya & Abhilash, Purushothaman Chirakkuzhyil, 2020. "Policy recommendations for enabling transition towards sustainable agriculture in India," Land Use Policy, Elsevier, vol. 96(C).
    9. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    10. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    11. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    12. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    13. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    14. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    15. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    16. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    17. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    18. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    19. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    20. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5490-:d:1678929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.