IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8737-d608745.html
   My bibliography  Save this article

Public Transport Network Vulnerability and Delay Distribution among Travelers

Author

Listed:
  • Caterina Malandri

    (Department of Civil, Chemical, Environmental and Materials Engineering—DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Luca Mantecchini

    (Department of Civil, Chemical, Environmental and Materials Engineering—DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Filippo Paganelli

    (Department of Civil, Chemical, Environmental and Materials Engineering—DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Maria Nadia Postorino

    (Department of Civil, Chemical, Environmental and Materials Engineering—DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

Abstract

Methodologies and approaches for assessing the vulnerability of a public transport network are generally based on quantifying the average delay generated for passengers by some type of disruption. In this work, a novel methodology is proposed, which combines the traditional approach, based on the quantitative evaluation of averaged disruption effects, with the analysis of the asymmetry of effects among users, by means of Lorenz curves and Gini index. This allows evaluating whether the negative consequences of disruptions are equally spread among passengers or if differences exist. The results obtained show the potential of the proposed method to provide better knowledge about the effects of a disruption on a public transport network. Particularly, it emerged that disrupted scenarios that appear similar in terms of average impacts are actually very different in terms of the asymmetry of effects among users.

Suggested Citation

  • Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8737-:d:608745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    2. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    3. Seongman Jang & Youngsoo An & Changhyo Yi & Seungil Lee, 2017. "Assessing the spatial equity of Seoul’s public transportation using the Gini coefficient based on its accessibility," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(1), pages 91-107, January.
    4. Lope, Dinah Jane & Dolgun, Anil, 2020. "Measuring the inequality of accessible trams in Melbourne," Journal of Transport Geography, Elsevier, vol. 83(C).
    5. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    6. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    7. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    8. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    9. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    10. Qing-Chang Lu & Shan Lin, 2019. "Vulnerability Analysis of Urban Rail Transit Network within Multi-Modal Public Transport Networks," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    11. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    12. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    13. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    14. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    15. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    16. Jenelius, Erik, 2009. "Network structure and travel patterns: explaining the geographical disparities of road network vulnerability," Journal of Transport Geography, Elsevier, vol. 17(3), pages 234-244.
    17. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    18. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    19. Leng, Jun-qiang & Zhai, Jing & Li, Qian-wen & Zhao, Lin, 2018. "Construction of road network vulnerability evaluation index based on general travel cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 421-429.
    20. Steven K. Peterson & Richard L. Church, 2008. "A Framework for Modeling Rail Transport Vulnerability," Growth and Change, Wiley Blackwell, vol. 39(4), pages 617-641, December.
    21. Oliveira, Eduardo Leal de & Portugal, Licínio da Silva & Porto Junior, Walter, 2016. "Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 195-208.
    22. Chen, Bi Yu & Lam, William H.K. & Sumalee, Agachai & Li, Qingquan & Li, Zhi-Chun, 2012. "Vulnerability analysis for large-scale and congested road networks with demand uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 501-516.
    23. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    24. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    25. David M. Levinson & Henry X. Liu & Michael Bell (ed.), 2012. "Network Reliability in Practice," Transportation Research, Economics and Policy, Springer, edition 1, number 978-1-4614-0947-2, June.
    26. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    27. Guzman, Luis A. & Oviedo, Daniel & Rivera, Carlos, 2017. "Assessing equity in transport accessibility to work and study: The Bogotá region," Journal of Transport Geography, Elsevier, vol. 58(C), pages 236-246.
    28. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    29. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    30. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    31. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    32. Taylor, Michael A.P. & Susilawati,, 2012. "Remoteness and accessibility in the vulnerability analysis of regional road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 761-771.
    33. Cats, O. & Yap, M. & van Oort, N., 2016. "Exposing the role of exposure: Public transport network risk analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 1-14.
    34. Delbosc, Alexa & Currie, Graham, 2011. "Using Lorenz curves to assess public transport equity," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1252-1259.
    35. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    36. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    37. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    38. Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
    39. Cats, Oded, 2013. "Multi-agent transit operations and assignment model," Working papers in Transport Economics 2013:24, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    40. Malandri, Caterina & Fonzone, Achille & Cats, Oded, 2018. "Recovery time and propagation effects of passenger transport disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 7-17.
    41. David M. Levinson & Henry Liu & Michael G. H. Bell, 2012. "Introduction to Network Reliability in Practice," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 1-4, Springer.
    42. Pavkova, Katerina & Currie, Graham & Delbosc, Alexa & Sarvi, Majid, 2016. "Selecting tram links for priority treatments - The Lorenz Curve approach," Journal of Transport Geography, Elsevier, vol. 55(C), pages 101-109.
    43. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    44. Menno Yap & Oded Cats, 0. "Predicting disruptions and their passenger delay impacts for public transport stops," Transportation, Springer, vol. 0, pages 1-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo della Mura & Serena Failla & Nicolò Gori & Alfonso Micucci & Filippo Paganelli, 2022. "E-Scooter Presence in Urban Areas: Are Consistent Rules, Paying Attention and Smooth Infrastructure Enough for Safety?," Sustainability, MDPI, vol. 14(21), pages 1-36, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    2. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    3. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    5. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    6. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    7. Qing-Chang Lu & Shan Lin, 2019. "Vulnerability Analysis of Urban Rail Transit Network within Multi-Modal Public Transport Networks," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    8. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    9. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    10. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    11. Almotahari, Amirmasoud & Yazici, Anil, 2021. "A computationally efficient metric for identification of critical links in large transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    13. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    14. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    15. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    16. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    17. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    18. Jafino, Bramka Arga, 2021. "An equity-based transport network criticality analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 204-221.
    19. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    20. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8737-:d:608745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.