IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6816-d576076.html
   My bibliography  Save this article

The Effects of Life Course Events on Car Ownership and Sustainable Mobility Tools Adoption Decisions: Results of an Error Component Random Parameter Logit Model

Author

Listed:
  • Gaofeng Gu

    (Department of the Build Environment, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Tao Feng

    (Department of the Build Environment, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Chixing Zhong

    (School of Architecture, Hunan University, Changsha 410082, China
    College of Fine Arts and Design, Hunan First Normal University, Changsha 410205, China)

  • Xiaoxi Cai

    (College of Fine Arts and Design, Hunan First Normal University, Changsha 410205, China)

  • Jiang Li

    (School of Architecture and Art, Central South University, Changsha 410083, China)

Abstract

Life course events can change household travel demand dramatically. Recent studies of car ownership have examined the impacts of life course events on the purchasing, replacing, and disposing of cars. However, with the increasing diversification of mobility tools, changing the fleet size is not the only option to adapt to the change caused by life course events. People have various options with the development of sustainable mobility tools including electric car, electric bike, and car sharing. In order to determine the impacts of life course events on car ownership and the decision of mobility tool type, a stated choice experiment was conducted. The experiment also investigated how the attributes of mobility tools related to the acceptance of them. Based on existing literature, we identified the attributes of mobility tools and several life course events which are considered to be influential in car ownership decision and new types of mobility tools choice. The error component random parameter logit model was estimated. The heterogeneity across people on current car and specific mobility tools are considered. The results indicate people incline not to sell their current car when they choose an electric bike or shared car. Regarding the life course events, baby birth increases the probability to purchase an additional car, while it decreases the probability to purchase an electric bike or joining a car sharing scheme. Moreover, the estimation of error components implies that there is unobserved heterogeneity across respondents on the sustainable mobility tools choice and the decision on household’s current car.

Suggested Citation

  • Gaofeng Gu & Tao Feng & Chixing Zhong & Xiaoxi Cai & Jiang Li, 2021. "The Effects of Life Course Events on Car Ownership and Sustainable Mobility Tools Adoption Decisions: Results of an Error Component Random Parameter Logit Model," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6816-:d:576076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    2. Firnkorn, Jörg & Müller, Martin, 2011. "What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm," Ecological Economics, Elsevier, vol. 70(8), pages 1519-1528, June.
    3. Malene Freudendal-Pedersen & Sven Kesselring & Eriketti Servou, 2019. "What is Smart for the Future City? Mobilities and Automation," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    4. Cherry, Christopher R. & Yang, Hongtai & Jones, Luke R. & He, Min, 2016. "Dynamics of electric bike ownership and use in Kunming, China," Transport Policy, Elsevier, vol. 45(C), pages 127-135.
    5. Valeri, Eva & Danielis, Romeo, 2015. "Simulating the market penetration of cars with alternative fuelpowertrain technologies in Italy," Transport Policy, Elsevier, vol. 37(C), pages 44-56.
    6. Abu Oakil & Dick Ettema & Theo Arentze & Harry Timmermans, 2014. "Changing household car ownership level and life cycle events: an action in anticipation or an action on occurrence," Transportation, Springer, vol. 41(4), pages 889-904, July.
    7. Gerard Jong & Ryuichi Kitamura, 2009. "A review of household dynamic vehicle ownership models: holdings models versus transactions models," Transportation, Springer, vol. 36(6), pages 733-743, November.
    8. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    9. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    10. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    11. Soud K. Al-Thani & Cynthia P. Skelhorn & Alexandre Amato & Muammer Koc & Sami G. Al-Ghamdi, 2018. "Smart Technology Impact on Neighborhood Form for a Sustainable Doha," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    12. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    13. Le Vine, Scott & Polak, John, 2019. "The impact of free-floating carsharing on car ownership: Early-stage findings from London," Transport Policy, Elsevier, vol. 75(C), pages 119-127.
    14. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    15. Matthew J. Beck & John M. Rose & Stephen P. Greaves, 2017. "I can’t believe your attitude: a joint estimation of best worst attitudes and electric vehicle choice," Transportation, Springer, vol. 44(4), pages 753-772, July.
    16. Guo, Jia & Feng, Tao & Timmermans, Harry J.P., 2019. "Time-varying dependencies among mobility decisions and key life course events: An application of dynamic Bayesian decision networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 82-92.
    17. Zhang, Junyi & Yu, Biying & Chikaraishi, Makoto, 2014. "Interdependences between household residential and car ownership behavior: a life history analysis," Journal of Transport Geography, Elsevier, vol. 34(C), pages 165-174.
    18. Dastan Bamwesigye & Petra Hlavackova, 2019. "Analysis of Sustainable Transport for Smart Cities," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    19. Ben Clark & Kiron Chatterjee & Steve Melia, 2016. "Changes in level of household car ownership: the role of life events and spatial context," Transportation, Springer, vol. 43(4), pages 565-599, July.
    20. J. Pierce & Andrew Nash & Carole Clouter, 2013. "The in-use annual energy and carbon saving by switching from a car to an electric bicycle in an urban UK general medical practice: the implication for NHS commuters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1645-1651, December.
    21. Frauke Behrendt, 2019. "Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities," Sustainability, MDPI, vol. 11(3), pages 1-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaofeng Gu & Xiaofeng Pan, 2023. "A Study on the Interdependence in Sustainable Mobility Tools and Home Energy Equipment Choices," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Insights into the Impacts of Mega Transport Infrastructures on the Transformation of Urban Fabric: Case of BRT Lahore," Sustainability, MDPI, vol. 13(13), pages 1-32, July.
    3. Zhangyuan He & Hans-Dietrich Haasis, 2020. "A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    4. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    5. Scheiner, Joachim, 2020. "Changes in travel mode use over the life course with partner interactions in couple households," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 791-807.
    6. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    7. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    8. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    9. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    10. Nadia Palmieri & Roberto Tomasone & Carla Cedrola & Daniele Puri & Mauro Pagano, 2023. "Factors Affecting Disabled Consumer Preferences for an Electric Vehicle for Rural Mobility: An Italian Experimental Study," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    11. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    12. Jochem, Patrick & Frankenhauser, Dominik & Ewald, Lukas & Ensslen, Axel & Fromm, Hansjörg, 2020. "Does free-floating carsharing reduce private vehicle ownership? The case of SHARE NOW in European cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 373-395.
    13. Giansoldati, Marco & Danielis, Romeo & Rotaris, Lucia & Scorrano, Mariangela, 2018. "The role of driving range in consumers' purchasing decision for electric cars in Italy," Energy, Elsevier, vol. 165(PA), pages 267-274.
    14. Higueras-Castillo, Elena & Kalinic, Zoran & Marinkovic, Veljko & Liébana-Cabanillas, Francisco J., 2020. "A mixed analysis of perceptions of electric and hybrid vehicles," Energy Policy, Elsevier, vol. 136(C).
    15. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    16. Liao, Fanchao & Molin, Eric & Timmermans, Harry & van Wee, Bert, 2019. "Consumer preferences for business models in electric vehicle adoption," Transport Policy, Elsevier, vol. 73(C), pages 12-24.
    17. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    18. Higgins, Christopher D. & Mohamed, Moataz & Ferguson, Mark R., 2017. "Size matters: How vehicle body type affects consumer preferences for electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 182-201.
    19. Jitka Fialová & Dastan Bamwesigye & Jan Łukaszkiewicz & Beata Fortuna-Antoszkiewicz, 2021. "Smart Cities Landscape and Urban Planning for Sustainability in Brno City," Land, MDPI, vol. 10(8), pages 1-17, August.
    20. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6816-:d:576076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.