IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2443-d334914.html
   My bibliography  Save this article

Increasing Grazing in Dairy Cow Milk Production Systems in Europe

Author

Listed:
  • Deirdre Hennessy

    (Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 P30, Ireland)

  • Luc Delaby

    (INRAE, AgroCampus Ouest, Physiologie Environnement et Génétique pour l’Animal et les Systèmes d’Elevage, F-35590 Saint-Gilles, France)

  • Agnes van den Pol-van Dasselaar

    (Grassland Science, Aeres University of Applied Sciences, 8251 JZ Dronten, The Netherlands)

  • Laurence Shalloo

    (Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork P61 P30, Ireland)

Abstract

In temperate regions of Europe where grass grows for most of the year, grazed pasture is the lowest cost feed for milk production. Grazed pasture can make a contribution to dairy cow feeding systems in other parts of Europe, but is less important. While there are many challenges to maintaining or increasing the proportion of grazed grass in dairy cow diets, there are also opportunities to increase its contribution. Grass use and quality can be challenging for several reasons, including the cow and sward interaction, and factors influencing dry matter intake. Adapting grazing management strategies can provide opportunities for incorporating grazing and perhaps increase grazing in dairy cow milk production systems. Pasture management tools and techniques offer the opportunity to increase herbage use at grazing. While there are many benefits of grazing including economic, environmental, animal welfare and social, there are also the challenges to maintaining grazed pasture in dairy cow diets. The objective of this paper is to present an overview of the challenges and opportunities for grazing in dairy milk production systems.

Suggested Citation

  • Deirdre Hennessy & Luc Delaby & Agnes van den Pol-van Dasselaar & Laurence Shalloo, 2020. "Increasing Grazing in Dairy Cow Milk Production Systems in Europe," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2443-:d:334914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wreford, Anita & Topp, Cairistiona F.E., 2020. "Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom," Agricultural Systems, Elsevier, vol. 178(C).
    2. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    3. Afshin Ghahramani & S. Mark Howden & Agustin del Prado & Dean T. Thomas & Andrew D. Moore & Boyu Ji & Serkan Ates, 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review," Sustainability, MDPI, vol. 11(24), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Möck, Malte & Becker, Talea & Feindt, Peter H., 2021. "Die Bedürfnisse landwirtschaftlicher Akteure in der Grünlandbewirtschaftung in Deutschland: Ergebnisse einer qualitativen Befragung," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317069, German Association of Agricultural Economists (GEWISOLA).
    2. Radisav Dubljević & Božidarka Marković & Dušica Radonjić & Danijela Stešević & Milan Marković, 2020. "Influence of Changes in Botanical Diversity and Quality of Wet Grasslands through Phenological Phases on Cow Milk Fatty Acid Composition," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    3. Xabier Díaz de Otálora & Agustín del Prado & Federico Dragoni & Fernando Estellés & Barbara Amon, 2021. "Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    4. Darren J. Murphy & Michael D. Murphy & Bernadette O’Brien & Michael O’Donovan, 2021. "A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland," Agriculture, MDPI, vol. 11(7), pages 1-36, June.
    5. Barbara Wróbel & Waldemar Zielewicz & Mariola Staniak, 2023. "Challenges of Pasture Feeding Systems—Opportunities and Constraints," Agriculture, MDPI, vol. 13(5), pages 1-31, April.
    6. Vogel, Everton & Beber, Caetano Luiz, 2021. "Sustainable Intensification Strategies for GHG Mitigation Among Heterogeneous Dairy Farms in Paraná, Brazil," 2021 Conference, August 17-31, 2021, Virtual 315219, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyian, Natalia & Kolosha, Valerii, 2020. "Формування Ціни На Молоко В Україні В Контексті Світових Тенденцій," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 6(4), December.
    2. Graeme J. Doole, 2010. "Evaluating Input Standards for Non‐Point Pollution Control under Firm Heterogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 680-696, September.
    3. Ramilan, Thiagarajah & Scrimgeour, Frank & Marsh, Dan, 2011. "Analysis of environmental and economic efficiency using a farm population micro-simulation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1344-1352.
    4. José A. Gómez-Limón & Andrés J. Picazo-Tadeo & Ernest Reig-Martínez, 2011. "Eco-efficiency Assessment of Olive Farms in Andalusia," Working Papers 1105, Department of Applied Economics II, Universidad de Valencia.
    5. Huysveld, Sophie & Van Meensel, Jef & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Dewulf, Jo & Lauwers, Ludwig, 2017. "Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms," Agricultural Systems, Elsevier, vol. 150(C), pages 34-45.
    6. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    7. Catarina D. Melo & Cristiana S. A. M. Maduro Dias & Sophie Wallon & Alfredo E. S. Borba & João Madruga & Paulo A. V. Borges & Maria T. Ferreira & Rui B. Elias, 2022. "Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures," Agriculture, MDPI, vol. 12(3), pages 1-18, March.
    8. Graeme J. Doole & Dan Marsh & Thiagaragah Ramilan, 2011. "Evaluation of Agri-Environmental Policies for Water Quality Improvement Accounting for Firm Heterogeneity," Working Papers in Economics 11/13, University of Waikato.
    9. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    10. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Virgilijus Baliuckas & Almantas Razukas, 2021. "Natural and Managed Grasslands Productivity during Multiyear in Ex-Arable Lands (in the Context of Climate Change)," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    11. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    12. Kalaugher, Electra & Beukes, Pierre & Bornman, Janet F. & Clark, Anthony & Campbell, David I., 2017. "Modelling farm-level adaptation of temperate, pasture-based dairy farms to climate change," Agricultural Systems, Elsevier, vol. 153(C), pages 53-68.
    13. Flysjö, Anna & Henriksson, Maria & Cederberg, Christel & Ledgard, Stewart & Englund, Jan-Eric, 2011. "The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden," Agricultural Systems, Elsevier, vol. 104(6), pages 459-469, July.
    14. Olivia FitzGerald & Catherine Matilda Collins & Clive Potter, 2021. "Woodland Expansion in Upland National Parks: An Analysis of Stakeholder Views and Understanding in the Dartmoor National Park, UK," Land, MDPI, vol. 10(3), pages 1-18, March.
    15. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    16. Thomas Slijper & Yann de Mey & P Marijn Poortvliet & Miranda P M Meuwissen, 2022. "Quantifying the resilience of European farms using FADN," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 121-150.
    17. Pomi Shahbaz & Azhar Abbas & Babar Aziz & Bader Alhafi Alotaibi & Abou Traore, 2022. "Nexus between Climate-Smart Livestock Production Practices and Farmers’ Nutritional Security in Pakistan: Exploring Level, Linkages, and Determinants," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    18. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    19. Myung-Jin Kim & Robert J. Nicholls & John M. Preston & Gustavo A. Almeida, 2022. "Evaluation of flexibility in adaptation projects for climate change," Climatic Change, Springer, vol. 171(1), pages 1-17, March.
    20. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2443-:d:334914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.