IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p237-d302479.html
   My bibliography  Save this article

Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions

Author

Listed:
  • Sinéad O’Keeffe

    (Department of Bioenergy, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany)

  • Daniela Thrän

    (Department of Bioenergy, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany
    Bioenergy Systems Department, Deutsches Biomasseforschungszentrum (DBFZ), 04318 Leipzig, Germany)

Abstract

Anaerobic digestion producing biogas is an important decentralized renewable energy technology used to mitigate climate change. It is dependent on local and regional feedstocks, which determine its sustainability. This has led to discussions on how to alter feedstock for biogas plants without compromising their GHG (Greenhouse gas) saving, one particular issue being the use of Maize silage (MS) as the dominant feedstock. To support this discussion, this paper presents an integrated life cycle assessment of energy crop cultivation for 425 biogas catchments in the region of Central Germany (CG). The simulations for the CG region showed that MS as an effective crop to mitigate GHG emissions per kilowatt hour (GHG culti ) was context dependent. In some cases, GHG culti reductions were supported due to higher yields, and in other cases, this led to increased GHG culti . We show that the often-proposed strategy of substituting one crop for another needs to be adapted for strategies which take into account the crop mixtures fed into biogas plants and how they perform altogether, under the specific regional and locational conditions. Only in this way can the trade-offs for lower GHG culti be identified and managed.

Suggested Citation

  • Sinéad O’Keeffe & Daniela Thrän, 2019. "Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:237-:d:302479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Appel, Franziska & Ostermeyer-Wiethaup, Arlette & Balmann, Alfons, 2016. "Effects of the German Renewable Energy Act on structural change in agriculture – The case of biogas," Utilities Policy, Elsevier, vol. 41(C), pages 172-182.
    2. Rebecca Chaplin-Kramer & Sarah Sim & Perrine Hamel & Benjamin Bryant & Ryan Noe & Carina Mueller & Giles Rigarlsford & Michal Kulak & Virginia Kowal & Richard Sharp & Julie Clavreul & Edward Price & S, 2017. "Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Meyer-Aurich, Andreas & Schattauer, Alexander & Hellebrand, Hans Jürgen & Klauss, Hilde & Plöchl, Matthias & Berg, Werner, 2012. "Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources," Renewable Energy, Elsevier, vol. 37(1), pages 277-284.
    4. Jacobs, Anna & Auburger, Sebastian & Bahrs, Enno & Brauer-Siebrecht, Wiebke & Christen, Olaf & Götze, Philipp & Koch, Heinz-Josef & Rücknagel, Jan & Märländer, Bernward, 2017. "Greenhouse gas emission of biogas production out of silage maize and sugar beet – An assessment along the entire production chain," Applied Energy, Elsevier, vol. 190(C), pages 114-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    2. Anita Konieczna & Kamil Roman & Kinga Borek & Emilia Grzegorzewska, 2021. "GHG and NH 3 Emissions vs. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms; a Further Study," Energies, MDPI, vol. 14(17), pages 1-16, September.
    3. Bin He & Xin Yuan & Shusheng Qian & Bing Li, 2023. "Product low‐carbon design, manufacturing, logistics, and recycling: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(5), September.
    4. Heinrich, F. & Appel, F., 2018. "Do investors ruin Germany s peasant agriculture?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277171, International Association of Agricultural Economists.
    5. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    6. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    7. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    8. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    9. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    10. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    11. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    12. Jacobsen, Brian H. & Laugesen, Frederik M. & Dubgaard, Alex, 2014. "The economics of biogas in Denmark: a farm and socioeconomic perspective," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 3(3), pages 1-10.
    13. Mohrmann, Sören & Steins, Aaron & Schaper, Christian, "undated". "Erfolgsfaktoren und Zukunftsaussichten für eine wirtschaftliche Biogasproduktion in Deutschland - Ergebnisse einer qualitativen Inhaltsanalyse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317072, German Association of Agricultural Economists (GEWISOLA).
    14. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    15. Vera Eory & Cairistiona F. E. Topp & Adam Butler & Dominic Moran, 2018. "Addressing Uncertainty in Efficient Mitigation of Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 627-645, September.
    16. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    17. Sebastian Awiszus & Klaus Meissner & Sebastian Reyer & Joachim Müller, 2019. "Environmental Assessment of a Bio-Refinery Concept Comprising Biogas Production, Lactic Acid Extraction and Plant Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    18. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    19. L. Hlisnikovský & G. Mühlbachová & E. Kunzová & M. Hejcman & M. Pechová, 2016. "Changes of risky element concentrations under organic and mineral fertilization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(8), pages 355-360.
    20. Alper Bayram & Antonino Marvuglia & Maria Myridinas & Marta Porcel, 2022. "Increasing Biowaste and Manure in Biogas Feedstock Composition in Luxembourg: Insights from an Agent-Based Model," Sustainability, MDPI, vol. 15(1), pages 1-26, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:237-:d:302479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.