IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6236-d284401.html
   My bibliography  Save this article

Sustainable Housing: Understanding the Barriers to Adopting Net Zero Energy Homes in Ontario, Canada

Author

Listed:
  • Ranjita Singh

    (Ted Rogers School of Management, Ryerson University, Toronto, ON M5B 2K3, Canada)

  • Philip Walsh

    (Ted Rogers School of Management, Ryerson University, Toronto, ON M5B 2K3, Canada)

  • Christina Mazza

    (Yeates School of Graduate Studies, Ryerson University, Toronto, ON M5B 2K3, Canada)

Abstract

Buildings in Canada account for a significant amount of greenhouse gas (GHG) emissions and net zero energy building technology has been identified as part of the solution. This study presents a conceptual model identifying barriers to the adoption of net zero energy housing and tests it by administering a survey to 271 participants in a net zero energy housing demonstration project in Toronto, Canada. Using multivariate correlation and multi-linear regression analyses this study finds that of all the innovation adoption variables it was the construction and design quality that was the most significant contributor to the adoption of a net zero energy home by a potential home owner. This study found that the (a) extra cost compared to a conventional home, b) lack of knowledge about the technology associated with a net zero energy home or (c) not knowing someone who owned a net zero energy home were not significant barriers to accepting net zero energy homes. Our results suggest that policy-makers should promote the diffusion of net zero energy home technology by encouraging housing developers to include net zero energy homes in their collection of model homes, with an emphasis on quality design and construction. Furthermore, engaging in trust building initiatives such as education and knowledge about the technology, its related energy cost savings, and the environmental benefits would contribute to a greater acceptance of net zero energy homes.

Suggested Citation

  • Ranjita Singh & Philip Walsh & Christina Mazza, 2019. "Sustainable Housing: Understanding the Barriers to Adopting Net Zero Energy Homes in Ontario, Canada," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6236-:d:284401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pia Pässilä & Lauri Pulkka & Seppo Junnila, 2015. "How to Succeed in Low-Energy Housing—Path Creation Analysis of Low-Energy Innovation Projects," Sustainability, MDPI, vol. 7(7), pages 1-22, July.
    2. Philip R. Walsh & Rachel Dodds, 2017. "Measuring the Choice of Environmental Sustainability Strategies in Creating a Competitive Advantage," Business Strategy and the Environment, Wiley Blackwell, vol. 26(5), pages 672-687, July.
    3. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    4. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    5. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    6. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    7. Heffernan, Emma & Pan, Wei & Liang, Xi & de Wilde, Pieter, 2015. "Zero carbon homes: Perceptions from the UK construction industry," Energy Policy, Elsevier, vol. 79(C), pages 23-36.
    8. Jin-Hee Kim & Ha-Ryeon Kim & Jun-Tae Kim, 2015. "Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52," Sustainability, MDPI, vol. 7(7), pages 1-19, July.
    9. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    10. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    11. Ali Amiri & Juudit Ottelin & Jaana Sorvari, 2019. "Are LEED-Certified Buildings Energy-Efficient in Practice?," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    13. Himanshu Mishra & Baba Shiv & Dhananjay Nayakankuppam, 2008. "The Blissful Ignorance Effect: Pre- versus Post-action Effects on Outcome Expectancies Arising from Precise and Vague Information," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(4), pages 573-585, July.
    14. Ju-Hee Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2018. "Consumers’ Willingness to Pay for Net-Zero Energy Apartment in South Korea," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    15. Mateja Kos Koklic & Irena Vida, 2009. "A Strategic Household Purchase: Consumer House Buying Behavior," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 7(1), pages 75-96.
    16. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    17. Jonatan Pinkse & Marcel Dommisse, 2009. "Overcoming barriers to sustainability: an explanation of residential builders' reluctance to adopt clean technologies," Business Strategy and the Environment, Wiley Blackwell, vol. 18(8), pages 515-527, December.
    18. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    19. Glass, Jacqueline & Dainty, Andrew R.J. & Gibb, Alistair G.F., 2008. "New build: Materials, techniques, skills and innovation," Energy Policy, Elsevier, vol. 36(12), pages 4534-4538, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shantanu Ashok Raut & Lia Marchi & Jacopo Gaspari, 2025. "A System Thinking Approach to Circular-Based Strategies for Deep Energy Renovation: A Systematic Review," Energies, MDPI, vol. 18(10), pages 1-27, May.
    2. Rajan Kumar Gangadhari & Saliha Karadayi‐Usta & Weng Marc Lim, 2025. "Breaking barriers toward a net‐zero economy," Natural Resources Forum, Blackwell Publishing, vol. 49(1), pages 138-159, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    2. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    3. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    4. Davide Antonioli & Grazia Cecere & Massimiliano Mazzanti, 2018. "Information communication technologies and environmental innovations in firms: joint adoptions and productivity effects," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(11), pages 1905-1933, September.
    5. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    6. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    7. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    8. Xu, Kunliang & Shao, Yanmin & Hu, Yiwen, 2025. "Responding to perceived environmental policy uncertainty with green technological innovation engagement: Evidence from a text-based measure," Energy Economics, Elsevier, vol. 142(C).
    9. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    10. Francesco Crespi & Claudia Ghisetti & Francesco Quatraro, 2015. "Environmental and innovation policies for the evolution of green technologies: a survey and a test," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 5(2), pages 343-370, December.
    11. Mitja Ruzzier & Evan J. Douglas & Maja Konečnik Ruzzier & Jana Hojnik, 2020. "International Entrepreneurial Orientation and the Intention to Internationalize," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    12. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    13. Hongru Yan & Huaqi Chai, 2021. "Consumers’ Intentions towards Green Hotels in China: An Empirical Study Based on Extended Norm Activation Model," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    14. Knuutila, Mirika & Vuorio, Anna, 2023. "Temporal-orientation in organizational decision-making: Factors affecting willingness to execute energy efficiency investments in business premises," Energy, Elsevier, vol. 271(C).
    15. Emel Yarimoglu & Tugrul Gunay, 2020. "The extended theory of planned behavior in Turkish customers' intentions to visit green hotels," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1097-1108, March.
    16. Aldieri, Luigi & Kotsemir, Maxim & Vinci, Concetto Paolo, 2017. "Jacobian spillovers in environmental technological proximity: the role of Mahalanobis index on European patents within the Triad," MPRA Paper 77274, University Library of Munich, Germany.
    17. Veugelers, Reinhilde & Hottenrott, Hanna & Rexhäuser, Sascha, 2012. "Green innovations and organisational change: making better use of environmental technology," CEPR Discussion Papers 9055, C.E.P.R. Discussion Papers.
    18. Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.
    19. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.
    20. Elisenda Jové‐Llopis & Agustí Segarra‐Blasco, 2020. "Why does eco‐innovation differ in service firms? Some insights from Spain," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 918-938, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6236-:d:284401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.