IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6162-d283558.html
   My bibliography  Save this article

Identifying Consumer Lifestyles through Their Energy Impacts: Transforming Social Science Data into Policy-Relevant Group-Level Knowledge

Author

Listed:
  • Stephan Schwarzinger

    (Department of Sociology, University of Graz (until 05/2019: Joanneum Research Forschungsgesellschaft mbH), Universitätsstraße 15/G4, 8010 Graz, Austria)

  • David Neil Bird

    (Centre for Climate, Energy and Society, Joanneum Research Forschungsgesellschaft mbH, Leonhardstraße 59, 8010 Graz, Austria)

  • Tomas Moe Skjølsvold

    (Department of Interdisciplinary Studies of Culture, Norwegian University of Science and Technology (NTNU), Edvard Bulls veg 1, 7491 Trondheim, Norway)

Abstract

The analytical framework presented herein is based on the identification of social groups with distinct patterns in their energy-relevant behaviour. This was achieved by clustering individuals according to their primary energy demands in six main areas of life. Due to the close relationship between energy-relevant behaviour and associated impacts, the suggested approach is considered better suited for the identification of groups with actual differences in their climate and energy-related behaviour than conventional approaches that cluster individuals based on their psychological or sociodemographic characteristics. Moreover, it is assumed that this focus on energy-relevant behaviour leads to a higher measuring equivalence in a country comparison or in a longitudinal setting. From an analytical point of view, the most significant benefit of the presented method over conventional lifestyle typologies is that all psychological, cultural and sociodemographic factors can be used as explanatory variables without resulting in circular reasoning. In terms of required data, the approach was designed around what could be collected by conventional survey methods. Variables such as energy use and emissions were calculated by the means of life cycle assessment (LCA) based on self-reported behaviour and equipment use.

Suggested Citation

  • Stephan Schwarzinger & David Neil Bird & Tomas Moe Skjølsvold, 2019. "Identifying Consumer Lifestyles through Their Energy Impacts: Transforming Social Science Data into Policy-Relevant Group-Level Knowledge," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6162-:d:283558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schot, Johan & Kanger, Laur, 2018. "Deep transitions: Emergence, acceleration, stabilization and directionality," Research Policy, Elsevier, vol. 47(6), pages 1045-1059.
    2. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    3. Perrels, Adriaan & Weber, Christoph, 2000. "Modelling Impacts of Lifestyle on Energy Demand and Related Emissions," Discussion Papers 228, VATT Institute for Economic Research.
    4. Samadi, Sascha & Gröne, Marie-Christine & Schneidewind, Uwe & Luhmann, Hans-Jochen & Venjakob, Johannes & Best, Benjamin, 2017. "Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 126-134.
    5. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    6. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    7. Elizabeth Shove & Gordon Walker, 2007. "Caution! Transitions Ahead: Politics, Practice, and Sustainable Transition Management," Environment and Planning A, , vol. 39(4), pages 763-770, April.
    8. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    9. Binder, Martin & Blankenberg, Ann-Kathrin, 2017. "Green lifestyles and subjective well-being: More about self-image than actual behavior?," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 304-323.
    10. Weber, Christoph & Perrels, Adriaan, 2000. "Modelling lifestyle effects on energy demand and related emissions," Energy Policy, Elsevier, vol. 28(8), pages 549-566, July.
    11. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    12. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    13. Gill Seyfang & Alex Haxeltine, 2012. "Growing Grassroots Innovations: Exploring the Role of Community-Based Initiatives in Governing Sustainable Energy Transitions," Environment and Planning C, , vol. 30(3), pages 381-400, June.
    14. Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
    15. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    16. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    17. Maria Csutora, 2012. "One More Awareness Gap? The Behaviour–Impact Gap Problem," Journal of Consumer Policy, Springer, vol. 35(1), pages 145-163, March.
    18. Peter Newton & Denny Meyer, 2013. "Exploring the Attitudes-Action Gap in Household Resource Consumption: Does “Environmental Lifestyle” Segmentation Align with Consumer Behaviour?," Sustainability, MDPI, vol. 5(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Schenk & Jörg Rössel & Sebastian Weingartner, 2021. "It’s All about Distinction: The Lifestyle Embeddedness of Fair Trade Consumption," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    2. Salina Daud & Wan Noordiana Wan Hanafi & Bamidele Victor Ayodele & Jegatheesan Rajadurai & Siti Indati Mustapa & Nurul Nadiah Ahmad & Wan Mohammad Taufik Wan Abdullah & Siti Norhidayah Toolib & Maryam, 2023. "Residential Consumers’ Lifestyle Energy Usage and Energy Efficiency in Selected States in Malaysia," Energies, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    2. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    3. Schmidt, Stephan & Weigt, Hannes, 2013. "A Review on Energy Consumption from a Socio-Economic Perspective: Reduction through Energy Efficiency and Beyond," Working papers 2013/15, Faculty of Business and Economics - University of Basel.
    4. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    5. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    6. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    7. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    8. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    9. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    10. Thøgersen, John, 2017. "Housing-related lifestyle and energy saving: A multi-level approach," Energy Policy, Elsevier, vol. 102(C), pages 73-87.
    11. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    12. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    13. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    14. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    15. Muratori, Matteo & Moran, Michael J. & Serra, Emmanuele & Rizzoni, Giorgio, 2013. "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, Elsevier, vol. 58(C), pages 168-177.
    16. Bai, Yin & Liu, Yong, 2013. "An exploration of residents’ low-carbon awareness and behavior in Tianjin, China," Energy Policy, Elsevier, vol. 61(C), pages 1261-1270.
    17. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    18. Li, Jiajia & Zhang, Jian & Zhang, Dayong & Ji, Qiang, 2019. "Does gender inequality affect household green consumption behaviour in China?," Energy Policy, Elsevier, vol. 135(C).
    19. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    20. Yong Liu & Jin Liu & Yunpeng Su, 2021. "Low-Carbon Awareness and Behaviors: Effects of Exposure to Climate Change Impact Photographs," SAGE Open, , vol. 11(3), pages 21582440211, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6162-:d:283558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.