IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5980-d280894.html
   My bibliography  Save this article

Predicting the Price of WTI Crude Oil Using ANN and Chaos

Author

Listed:
  • Tao Yin

    (School of Economics, Peking University, Beijing 100871, China)

  • Yiming Wang

    (School of Economics, Peking University, Beijing 100871, China)

Abstract

This paper mainly studied the chaotic characteristics and prediction of WTI crude oil monthly price time series from January 1980 to June 2017. Meanwhile, we analyzed whether the major shock of the financial crisis in July 2008 would break the chaotic character of the time series. In addition, when using the largest lyapunov exponent to determine chaotic characteristics, the robustness test of the largest lyapunov exponent was carried out using bootstrap method. Then, we utilized three types of prediction models (ANN+Chaos-type models, Chaos-type model and ANN-type models) to predict the price of crude oil in different months. And we found that the prediction accuracy of ANN-type model is lower than the other type models. This indicated that the accuracy of the prediction with ANN model under the model misspecification is not high because the time series of WTI crude oil price has chaotic characteristics. At last, we constructed a new predictive model, namely HWP-CHAOS model, to compare the prediction accuracy of the above three type models, and discovered the best prediction model among these models is HWP-CHAOS model.

Suggested Citation

  • Tao Yin & Yiming Wang, 2019. "Predicting the Price of WTI Crude Oil Using ANN and Chaos," Sustainability, MDPI, vol. 11(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5980-:d:280894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
    2. Sensoy, A., 2013. "Effects of monetary policy on the long memory in interest rates: Evidence from an emerging market," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 85-88.
    3. Apostolos Serletis & Periklis Gogas, 2007. "The North American Natural Gas Liquids Markets are Chaotic," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 17, pages 225-244, World Scientific Publishing Co. Pte. Ltd..
    4. Gu, Rongbao & Chen, Hongtao & Wang, Yudong, 2010. "Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2805-2815.
    5. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
    6. Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, , vol. 27(4), pages 81-96, October.
    7. Alvarez-Ramirez, Jose & Soriano, Angel & Cisneros, Myriam & Suarez, Rodolfo, 2003. "Symmetry/anti-symmetry phase transitions in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 583-596.
    8. Victor Chwee, 1998. "Chaos in Natural Gas Futures?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 149-164.
    9. Akbar Komijani & Esmaeil Naderi & Nadiya Gandali Alikhani, 2014. "A hybrid approach for forecasting of oil prices volatility," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(3), pages 323-340, September.
    10. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Testing for long-range dependence in the Brazilian term structure of interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1559-1573.
    11. Man, K. S., 2003. "Long memory time series and short term forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 477-491.
    12. Abramson, Bruce & Finizza, Anthony, 1991. "Using belief networks to forecast oil prices," International Journal of Forecasting, Elsevier, vol. 7(3), pages 299-315, November.
    13. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    14. Philip K. Verleger, Jr., 1993. "Adjusting to Volatile Energy Prices," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 41, April.
    15. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    16. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    17. Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Wei Chen & Chui-Yu Chiu & Mu-Chun Hsiao, 2021. "An Auxiliary Index for Reducing Brent Crude Investment Risk—Evaluating the Price Relationships between Brent Crude and Commodities," Sustainability, MDPI, vol. 13(9), pages 1-45, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahmiri, Salim, 2017. "A study on chaos in crude oil markets before and after 2008 international financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 389-395.
    2. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    3. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    4. Loretta Mastroeni & Pierluigi Vellucci, 2017. "“Chaos” In Energy And Commodity Markets: A Controversial Matter," Departmental Working Papers of Economics - University 'Roma Tre' 0218, Department of Economics - University Roma Tre.
    5. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    6. Loretta Mastroeni & Pierluigi Vellucci, 2016. ""Chaos" in energy and commodity markets: a controversial matter," Papers 1611.07432, arXiv.org, revised Mar 2017.
    7. Mastroeni, Loretta & Vellucci, Pierluigi & Naldi, Maurizio, 2019. "A reappraisal of the chaotic paradigm for energy commodity prices," Energy Economics, Elsevier, vol. 82(C), pages 167-178.
    8. Loretta Mastroeni & Pierluigi Vellucci, 2016. "“Butterfly Effect" vs Chaos in Energy Futures Markets," Departmental Working Papers of Economics - University 'Roma Tre' 0209, Department of Economics - University Roma Tre.
    9. Loretta Mastroeni & Pierluigi Vellucci, 2016. ""Butterfly Effect" vs Chaos in Energy Futures Markets," Papers 1610.05697, arXiv.org.
    10. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    11. Lahmiri, Salim, 2017. "Asymmetric and persistent responses in price volatility of fertilizers through stable and unstable periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 405-414.
    12. Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
    13. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    14. Lahmiri, Salim, 2017. "Cointegration and causal linkages in fertilizer markets across different regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 181-189.
    15. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    16. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    17. Lucey, Brian & Ren, Boru, 2021. "Does news tone help forecast oil?," Economic Modelling, Elsevier, vol. 104(C).
    18. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    19. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    20. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5980-:d:280894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.