IDEAS home Printed from
   My bibliography  Save this article

Industrial Efficiency Evaluation in China: A Nonparametric Production-Frontier Approach


  • Linlin Zhao

    () (School of Business, Nanjing Audit University, Yushan West Road 86, Nanjing 211815, China)

  • Lin Zhang

    () (School of Business, Nanjing Audit University, Yushan West Road 86, Nanjing 211815, China)

  • Yong Zha

    () (School of Management, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China)


An industrial system has positive and negative strategies to adapt to environmental regulations, which can be defined as natural disposability and managerial disposability. Meanwhile, the operational process of an industrial system can be divided into regular production activities and pollutant control activities. Within this, industrial system’s technical efficiency (TE) can be decomposed into economic efficiency (ECE) and environmental efficiency (ENE). On the basis of natural disposability and managerial disposability, this paper proposes static and dynamic data envelopment analysis (DEA) models to evaluate the efficiencies of industrial systems. Based on the proposed approach, TE, ECE, ENE, and Malmqusit productivity index (MPI) values were obtained simultaneously. The MPI values were further separated into the effects of static efficiency change and technical change. The proposed method was applied to assess the technical efficiencies of Chinese regional industrial systems between 2011 and 2015. Key findings are that (1) the low ENE is the main source of technical inefficiency; (2) the average static TE and ENE under natural disposability are both lower than those under managerial disposability; (3) the static efficiency change and technical change of TE are similar to those of ENE; and (4) the technical change has a significant impact on the changes in TE.

Suggested Citation

  • Linlin Zhao & Lin Zhang & Yong Zha, 2019. "Industrial Efficiency Evaluation in China: A Nonparametric Production-Frontier Approach," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5019-:d:267066

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    3. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    4. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    5. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    7. Zha, Yong & Liang, Nannan & Wu, Maoguo & Bian, Yiwen, 2016. "Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach," Omega, Elsevier, vol. 60(C), pages 60-72.
    8. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    9. Ronggang Zhang & Ching-Cheng Lu & Jen-Hui Lee & Ying Feng & Yung-Ho Chiu, 2019. "Dynamic Environmental Efficiency Assessment of Industrial Water Pollution," Sustainability, MDPI, Open Access Journal, vol. 11(11), pages 1-12, May.
    10. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    11. George E. Halkos & Nickolaos G. Tzeremes & Stavros A. Kourtzidis, 2016. "Measuring Sustainability Efficiency Using a Two-Stage Data Envelopment Analysis Approach," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1159-1175, October.
    12. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    13. Goto, Mika & Otsuka, Akihiro & Sueyoshi, Toshiyuki, 2014. "DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries," Energy, Elsevier, vol. 66(C), pages 535-549.
    14. Arcos-Vargas, A. & Núñez-Hernández, F. & Villa-Caro, Gabriel, 2017. "A DEA analysis of electricity distribution in Spain: An industrial policy recommendation," Energy Policy, Elsevier, vol. 102(C), pages 583-592.
    15. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    16. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    17. Liu, Yingnan & Wang, Ke, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis," Energy, Elsevier, vol. 93(P2), pages 1328-1337.
    18. Sueyoshi, Toshiyuki & Goto, Mika & Sugiyama, Manabu, 2013. "DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of U.S. coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 845-857.
    19. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    20. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    21. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Manli Cheng & Zhen Shao & Changhui Yang & Xiaoan Tang, 2019. "Analysis of Coordinated Development of Energy and Environment in China’s Manufacturing Industry under Environmental Regulation: A Comparative Study of Sub-Industries," Sustainability, MDPI, Open Access Journal, vol. 11(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    3. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    4. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    5. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    6. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    7. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    8. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "Comparison among U.S. industrial sectors by DEA environmental assessment: Equipped with analytical capability to handle zero or negative in production factors," Energy Economics, Elsevier, vol. 52(PA), pages 69-86.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    10. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    11. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    12. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    13. Xiangyu Teng & Liang Chun Lu & Yung-ho Chiu, 2018. "Considering Emission Treatment for Energy-Efficiency Improvement and Air Pollution Reduction in China’s Industrial Sector," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-18, November.
    14. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-20, August.
    15. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Marginal Rate of Transformation and Rate of Substitution measured by DEA environmental assessment: Comparison among European and North American nations," Energy Economics, Elsevier, vol. 56(C), pages 270-287.
    16. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    17. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2016. "Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment," Energy Economics, Elsevier, vol. 55(C), pages 173-188.
    19. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    20. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5019-:d:267066. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.