IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3433-d241992.html
   My bibliography  Save this article

The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union

Author

Listed:
  • Mihaela Simionescu

    (Institute for Economic Forecasting of the Romanian Academy, 050711 Bucharest, Romania)

  • Yuriy Bilan

    (Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Stanisław Gędek

    (Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Dalia Streimikiene

    (Kaunas Faculty, Vilnius University, Mutines 8, LT-44280 Kaunas, Lithuania)

Abstract

Considering food security and climate change mitigation as the main sustainability challenges for agriculture, the main goal is to achieve agricultural production at an acceptable level of greenhouse gas (GHG) emissions. In this paper, the effects of GHGs are described. Panel data models are built to assess the impact of greenhouse gases on harvested production of cereals in EU countries. The study is focused on the climate change cause by GHG emissions that have a direct impact on agriculture in what concerns cereal production. Therefore, the impact of GHGs on cereal production in the European Union, except Malta, in the period 2000–2016 was assessed. Moreover, the effects of GHGs on agricultural irrigated land in Denmark and Hungary, two EU countries with the large agricultural surface, were computed. The results indicated a positive impact of GHGs from agriculture and fertilizer consumption in the previous year on cereal production in the EU. Moreover, only in Hungary did the increase in GHG emissions determined a slow increase in the volume of agricultural irrigated lands in the period of 2000–2016.

Suggested Citation

  • Mihaela Simionescu & Yuriy Bilan & Stanisław Gędek & Dalia Streimikiene, 2019. "The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3433-:d:241992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Buchholz & Stephen Prisley & Gregg Marland & Charles Canham & Neil Sampson, 2014. "Uncertainty in projecting GHG emissions from bioenergy," Nature Climate Change, Nature, vol. 4(12), pages 1045-1047, December.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    4. Richard York, 2012. "Do alternative energy sources displace fossil fuels?," Nature Climate Change, Nature, vol. 2(6), pages 441-443, June.
    5. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    6. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    7. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    8. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana Némethová & Hana Svobodová & Antonín Věžník, 2022. "Changes in Spatial Distribution of Arable Land, Crop Production and Yield of Selected Crops in the EU Countries after 2004," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    2. Yu Song & Bingrui Liu & Xiaohong Chen & Jia Liu, 2020. "Atmospheric Pollution Mapping of the Yangtze River Basin: An AQI-Based Weighted Co-Word Analysis," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    3. Qingduo Mao & Ben Ma & Hongshuai Wang & Qi Bian, 2019. "Investigating Policy Instrument Adoption in Low-Carbon City Development: A Case Study from China," Energies, MDPI, vol. 12(18), pages 1-17, September.
    4. Ionut Viorel Herghiligiu & Ioan-Bogdan Robu & Marius Pislaru & Adrian Vilcu & Anca Laura Asandului & Silvia Avasilcăi & Catalin Balan, 2019. "Sustainable Environmental Management System Integration and Business Performance: A Balance Assessment Approach Using Fuzzy Logic," Sustainability, MDPI, vol. 11(19), pages 1-30, September.
    5. Nicoleta Mihaela Florea & Roxana Maria Bădîrcea & Ramona Costina Pîrvu & Alina Georgiana Manta & Marius Dalian Doran & Elena Jianu, 2020. "The impact of agriculture and renewable energy on climate change in Central and East European Countries," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(10), pages 444-457.
    6. Hang Liu & Shilin Nie, 2019. "Low Carbon Scheduling Optimization of Flexible Integrated Energy System Considering CVaR and Energy Efficiency," Sustainability, MDPI, vol. 11(19), pages 1-27, September.
    7. Lee, Chien-Chiang & Wang, Fuhao, 2022. "How does digital inclusive finance affect carbon intensity?," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 174-190.
    8. Kamil Pochwat & Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2020. "Financial Analysis of the Use of Two Horizontal Drain Water Heat Recovery Units," Energies, MDPI, vol. 13(16), pages 1-18, August.
    9. Chandio, Abbas Ali & Jiang, Yuansheng & Ahmad, Fayyaz & Adhikari, Salina & Ain, Qurat Ul, 2021. "Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal," Technology in Society, Elsevier, vol. 66(C).
    10. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    11. Krzysztof Wach & Agnieszka Głodowska & Marek Maciejewski & Marek Sieja, 2021. "Europeanization Processes of the EU Energy Policy in Visegrad Countries in the Years 2005–2018," Energies, MDPI, vol. 14(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    2. Hennecke, Anna M. & Faist, Mireille & Reinhardt, Jürgen & Junquera, Victoria & Neeft, John & Fehrenbach, Horst, 2013. "Biofuel greenhouse gas calculations under the European Renewable Energy Directive – A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels," Applied Energy, Elsevier, vol. 102(C), pages 55-62.
    3. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    4. Na Su & Zhenbo Wang, 2022. "Visual Analysis of Global Carbon Mitigation Research Based on Scientific Knowledge Graphs," IJERPH, MDPI, vol. 19(9), pages 1-15, May.
    5. Kreft, Cordelia & Huber, Robert & Wuepper, David & Finger, Robert, 2021. "The role of non-cognitive skills in farmers' adoption of climate change mitigation measures," Ecological Economics, Elsevier, vol. 189(C).
    6. Galdos, Marcelo & Cavalett, Otávio & Seabra, Joaquim E.A. & Nogueira, Luiz Augusto Horta & Bonomi, Antonio, 2013. "Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions," Applied Energy, Elsevier, vol. 104(C), pages 576-582.
    7. Steven M. Ramsey & Jason S. Bergtold & Jessica L. Heier Stamm, 2021. "Field‐Level Land‐Use Adaptation to Local Weather Trends," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1314-1341, August.
    8. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    9. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    10. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    11. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    12. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    13. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    14. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    15. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    16. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    17. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    18. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    19. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    20. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3433-:d:241992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.