COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Samuel V. Scarpino & Giovanni Petri, 2019. "On the predictability of infectious disease outbreaks," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
- Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
- Deming Lei & Yue Yuan & Jingcao Cai & Danyu Bai, 2020. "An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 58(2), pages 597-614, January.
- Sina Ardabili & Amir Mosavi & Asghar Mahmoudi & Tarahom Mesri Gundoshmian & Saeed Nosratabadi & Annamaria R. Varkonyi-Koczy, 2020. "Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks," Papers 2010.02673, arXiv.org.
- Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
- Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
- Martin Rypdal & George Sugihara, 2019. "Inter-outbreak stability reflects the size of the susceptible pool and forecasts magnitudes of seasonal epidemics," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
- Shannon M. Fast & Louis Kim & Emily L. Cohn & Sumiko R. Mekaru & John S. Brownstein & Natasha Markuzon, 2018. "Predicting social response to infectious disease outbreaks from internet-based news streams," Annals of Operations Research, Springer, vol. 263(1), pages 551-564, April.
- Zohreh Sheikh Khozani & Saeid Sheikhi & Wan Hanna Melini Wan Mohtar & Amir Mosavi, 2020. "Forecasting shear stress parameters in rectangular channels using new soft computing methods," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
- Dantas, Eber & Tosin, Michel & Cunha Jr, Americo, 2018. "Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 249-259.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Csaba G. TÓTH, 2022. "Narrowing the gap in regional and age-specific excess mortality during the COVID-19 in Hungary," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 185-207, June.
- Haghighat, Fatemeh, 2021. "Predicting the trend of indicators related to Covid-19 using the combined MLP-MC model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
- Gabriel Sepulveda & Abraham J. Arenas & Gilberto González-Parra, 2023. "Mathematical Modeling of COVID-19 Dynamics under Two Vaccination Doses and Delay Effects," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
- Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
- Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," FrenXiv e75gc_v1, Center for Open Science.
- Mustapha Kamal Benramdane & Elena Kornyshova & Samia Bouzefrane & Hubert Maupas, 2024. "Supervised Machine Learning for Matchmaking in Digital Business Ecosystems and Platforms," Information Systems Frontiers, Springer, vol. 26(4), pages 1331-1343, August.
- repec:osf:osfxxx:yc6e2_v1 is not listed on IDEAS
- Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArchive kczj5_v1, Center for Open Science.
- repec:osf:edarxi:5dwrt_v1 is not listed on IDEAS
- repec:osf:thesis:auyvc_v1 is not listed on IDEAS
- repec:osf:socarx:9vdwf_v1 is not listed on IDEAS
- Abraham J. Arenas & Gilberto González-Parra & Miguel Saenz Saenz, 2024. "Qualitative Analysis of a COVID-19 Mathematical Model with a Discrete Time Delay," Mathematics, MDPI, vol. 13(1), pages 1-23, December.
- Albertus J. Smit & Jennifer M. Fitchett & Francois A. Engelbrecht & Robert J. Scholes & Godfrey Dzhivhuho & Neville A. Sweijd, 2020. "Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19," IJERPH, MDPI, vol. 17(16), pages 1-28, August.
- repec:osf:metaar:haf2v_v1 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yulan Li & Yang Wang & Kun Ma, 2022. "Integrating Transformer and GCN for COVID-19 Forecasting," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
- Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
- Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
- Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
- Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
- Yunhwan Kim & Ana Vivas Barber & Sunmi Lee, 2020. "Modeling influenza transmission dynamics with media coverage data of the 2009 H1N1 outbreak in Korea," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Wang, Ning-Ning & Qiu, Shui-Han & Zhong, Xiao Wen & Di, Zeng-Ru, 2023. "Epidemic thresholds identification of susceptible-infected-recovered model based on the Eigen Microstate," Applied Mathematics and Computation, Elsevier, vol. 449(C).
- Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
- Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
- Iftikhar Ahmad & Ahsan Ayub & Uzair Ibrahim & Mansoor Khan Khattak & Manabu Kano, 2018. "Data-Based Sensing and Stochastic Analysis of Biodiesel Production Process," Energies, MDPI, vol. 12(1), pages 1-13, December.
- Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.
- Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
- Yang, L. & Entchev, E., 2014. "Performance prediction of a hybrid microgeneration system using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique," Applied Energy, Elsevier, vol. 134(C), pages 197-203.
More about this item
Keywords
machine learning; prediction model; COVID-19;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:890-:d:366145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.