IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282624.html
   My bibliography  Save this article

Time series forecasting of COVID-19 infections and deaths in Alpha and Delta variants using LSTM networks

Author

Listed:
  • Farnaz Sheikhi
  • Zahra Kowsari

Abstract

Since the beginning of the rapidly spreading COVID-19 pandemic, several mutations have occurred in the genetic sequence of the virus, resulting in emerging different variants of concern. These variants vary in transmissibility, severity of infections, and mortality rate. Designing models that are capable of predicting the future behavior of these variants in the societies can help decision makers and the healthcare system to design efficient health policies, and to be prepared with the sufficient medical devices and an adequate number of personnel to fight against this virus and the similar ones. Among variants of COVID-19, Alpha and Delta variants differ noticeably in the virus structures. In this paper, we study these variants in the geographical regions with different size, population densities, and social life styles. These regions include the country of Iran, the continent of Asia, and the whole world. We propose four deep learning models based on Long Short-Term Memory (LSTM), and examine their predictive power in forecasting the number of infections and deaths for the next three, next five, and next seven days in each variant. These models include Encoder Decoder LSTM (ED-LSTM), Bidirectional LSTM (Bi-LSTM), Convolutional LSTM (Conv-LSTM), and Gated Recurrent Unit (GRU). Performance of these models in predictions are evaluated using the root mean square error, mean absolute error, and mean absolute percentage error. Then, the Friedman test is applied to find the leading model for predictions in all conditions. The results show that ED-LSTM is generally the leading model for predicting the number of infections and deaths for both variants of Alpha and Delta, with the ability to forecast long time intervals ahead.

Suggested Citation

  • Farnaz Sheikhi & Zahra Kowsari, 2023. "Time series forecasting of COVID-19 infections and deaths in Alpha and Delta variants using LSTM networks," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0282624
    DOI: 10.1371/journal.pone.0282624
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282624
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282624&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gergo Pinter & Imre Felde & Amir Mosavi & Pedram Ghamisi & Richard Gloaguen, 2020. "COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    2. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    3. Khan, Firdos & Saeed, Alia & Ali, Shaukat, 2020. "Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    2. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    3. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," FrenXiv e75gc_v1, Center for Open Science.
    4. repec:osf:thesis:auyvc_v1 is not listed on IDEAS
    5. Bader S. Al-Anzi & Mohammad Alenizi & Jehad Al Dallal & Frage Lhadi Abookleesh & Aman Ullah, 2020. "An Overview of the World Current and Future Assessment of Novel COVID-19 Trajectory, Impact, and Potential Preventive Strategies at Healthcare Settings," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    6. repec:osf:metaar:haf2v_v1 is not listed on IDEAS
    7. Gabriel Sepulveda & Abraham J. Arenas & Gilberto González-Parra, 2023. "Mathematical Modeling of COVID-19 Dynamics under Two Vaccination Doses and Delay Effects," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
    8. Yu-Feng Zhao & Ming-Huan Shou & Zheng-Xin Wang, 2020. "Prediction of the Number of Patients Infected with COVID-19 Based on Rolling Grey Verhulst Models," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    9. Oras Baker & Zahra Ziran & Massimo Mecella & Kasthuri Subaramaniam & Sellappan Palaniappan, 2025. "Predictive Modeling for Pandemic Forecasting: A COVID-19 Study in New Zealand and Partner Countries," IJERPH, MDPI, vol. 22(4), pages 1-22, April.
    10. Guven, Murat & Cetinguc, Basak & Guloglu, Bulent & Calisir, Fethi, 2022. "The effects of daily growth in COVID-19 deaths, cases, and governments’ response policies on stock markets of emerging economies," Research in International Business and Finance, Elsevier, vol. 61(C).
    11. repec:osf:socarx:9vdwf_v1 is not listed on IDEAS
    12. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    13. Csaba G. TÓTH, 2022. "Narrowing the gap in regional and age-specific excess mortality during the COVID-19 in Hungary," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 185-207, June.
    14. repec:osf:edarxi:5dwrt_v1 is not listed on IDEAS
    15. Abraham J. Arenas & Gilberto González-Parra & Miguel Saenz Saenz, 2024. "Qualitative Analysis of a COVID-19 Mathematical Model with a Discrete Time Delay," Mathematics, MDPI, vol. 13(1), pages 1-23, December.
    16. Hongyun Tan & Xiaolie Qi, 2023. "Synergistic Interconstruction of the Green Development Concept in Chinese Rural Ecological Agriculture," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    17. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    18. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
    19. Qiang Wang & Min Su & Min Zhang & Rongrong Li, 2021. "Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare," IJERPH, MDPI, vol. 18(11), pages 1-50, June.
    20. Mustapha Kamal Benramdane & Elena Kornyshova & Samia Bouzefrane & Hubert Maupas, 2024. "Supervised Machine Learning for Matchmaking in Digital Business Ecosystems and Platforms," Information Systems Frontiers, Springer, vol. 26(4), pages 1331-1343, August.
    21. Tasneem Kamal Aldeen Muhamed & Mona Yahya Salim Alfefi & Nahla Morad, 2022. "Analysis Impact of Coronavirus in the Kingdom of Saudi Arabia by Using the Artificial Neural Network," Eximia Journal, Plus Communication Consulting SRL, vol. 5(1), pages 146-157, July.
    22. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    23. Yong Qin & Zeshui Xu & Xinxin Wang & Marinko Škare, 2021. "Are family firms in the eyes of economic policy?," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1233-1259, September.
    24. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Laith Abualigah & Mohamed Abd Elaziz, 2020. "Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea," IJERPH, MDPI, vol. 17(10), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.