IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v338y2018icp249-259.html
   My bibliography  Save this article

Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil

Author

Listed:
  • Dantas, Eber
  • Tosin, Michel
  • Cunha Jr, Americo

Abstract

Multiple instances of Zika virus epidemic have been reported around the world in the last two decades, turning the related illness into an international concern. In this context the use of mathematical models for epidemics is of great importance, since they are useful tools to study the underlying outbreak numbers and allow one to test the effectiveness of different strategies used to combat the associated diseases. This work deals with the development and calibration of an epidemic model to describe the 2016 outbreak of Zika virus in Brazil. A system of 8 differential equations with 8 parameters is employed to model the evolution of the infection through two populations. Nominal values for the model parameters are estimated from the literature. An inverse problem is formulated and solved by comparing the system response to real data from the outbreak. The calibrated results presents realistic parameters and returns reasonable descriptions, with the curve shape similar to the outbreak evolution and peak value close to the highest number of infected people during 2016. Considerations about the lack of data for some initial conditions are also made through an analysis over the response behavior according to their change in value.

Suggested Citation

  • Dantas, Eber & Tosin, Michel & Cunha Jr, Americo, 2018. "Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 249-259.
  • Handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:249-259
    DOI: 10.1016/j.amc.2018.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318305125
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    2. Wang, Xiaoyun & Wei, Lijuan & Zhang, Juan, 2014. "Dynamical analysis and perturbation solution of an SEIR epidemic model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 479-486.
    3. Diaz, Paul & Constantine, Paul & Kalmbach, Kelsey & Jones, Eric & Pankavich, Stephen, 2018. "A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 141-155.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:249-259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.