IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp1008-1023.html
   My bibliography  Save this article

On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model

Author

Listed:
  • Fu, Xiaoming

Abstract

In this paper, we consider a stochastic epidemic model with time delay and general incidence rate. We first prove the existence and uniqueness of the global positive solution. By using the Krylov–Bogoliubov method, we obtain the existence of invariant measures. Furthermore, we study a special case where the incidence rate is bilinear with distributed time delay. When the basic reproduction number R0<1, the analysis of the asymptotic behavior around the disease-free equilibrium E0 is provided while when R0>1, we prove that the invariant measure is unique and ergodic. The numerical simulations also validate our analytical results.

Suggested Citation

  • Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1008-1023
    DOI: 10.1016/j.physa.2019.04.181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119306119
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rudnicki, Ryszard, 2003. "Long-time behaviour of a stochastic prey-predator model," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 93-107, November.
    2. Wang, Fengyan & Wang, Xiaoyi & Zhang, Shuwen & Ding, Changming, 2014. "On pulse vaccine strategy in a periodic stochastic SIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 127-135.
    3. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    4. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Asymptotic behavior of stochastic multi-group epidemic models with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 527-541.
    5. Liu, Qun & Chen, Qingmei, 2015. "Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 140-153.
    6. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    7. Lu, Qiuying, 2009. "Stability of SIRS system with random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3677-3686.
    8. Yan Wang & Daqing Jiang, 2017. "Stationary Distribution and Extinction of a Stochastic Viral Infection Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-13, October.
    9. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    10. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    11. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    12. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    13. Tornatore, Elisabetta & Maria Buccellato, Stefania & Vetro, Pasquale, 2005. "Stability of a stochastic SIR system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 111-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    2. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 849-863.
    5. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    6. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.
    7. Tuerxun, Nafeisha & Wen, Buyu & Teng, Zhidong, 2021. "The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 888-912.
    8. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    9. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    11. El Fatini, Mohamed & El Khalifi, Mohamed & Gerlach, Richard & Laaribi, Aziz & Taki, Regragui, 2019. "Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Periodic solution for a stochastic nonautonomous SIR epidemic model with logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 816-826.
    13. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Cao, Zhongwei & Feng, Wei & Wen, Xiangdan & Zu, Li, 2019. "Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 894-907.
    15. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    16. Liu, Qun & Chen, Qingmei, 2015. "Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 140-153.
    17. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    20. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1008-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.