IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp311-318.html
   My bibliography  Save this article

Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network

Author

Listed:
  • Dun, Han
  • Shuting, Yan
  • She, Han
  • Lingfei, Qian
  • Chris, Ampimah Benjamin

Abstract

Considering the differences of individuals’ activities and personal propagation ability in real life, a new type of epidemic propagation model in activity-driven network is proposed. By employing the mean-field theory, we theoretically derive the epidemic spreading threshold, and using numerical simulation methods to further study our model in cases where the individual’s activity rate is not related to propagation ability or related conditions. The results indicate that, when individuals’ activity rate has no correlation to personal propagation ability, the epidemic threshold has a wide-ranging with the change of the average activity rate and the average propagation ability. When the recovery rate is small, individuals’ average activity rate has less effect on the density of infected. If an individual’s activity rate negatively correlates to his propagation ability, there is no significant correction between propagation ability and personal infected frequency. However, when the individual’s activity rate and propagation ability are positively correlated, propagation ability and personal infected frequency show a strong positive correlation. Our research provide a feasible method to explore how the differences of individuals’ activities and personal propagation ability affect the epidemic spreading.

Suggested Citation

  • Dun, Han & Shuting, Yan & She, Han & Lingfei, Qian & Chris, Ampimah Benjamin, 2019. "Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 311-318.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:311-318
    DOI: 10.1016/j.physa.2018.09.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312093
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    2. Han, Dun & Sun, Mei & Li, Dandan, 2015. "Epidemic process on activity-driven modular networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 354-362.
    3. Zhan, Xiu-Xiu & Liu, Chuang & Sun, Gui-Quan & Zhang, Zi-Ke, 2018. "Epidemic dynamics on information-driven adaptive networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 196-204.
    4. Diaz, Paul & Constantine, Paul & Kalmbach, Kelsey & Jones, Eric & Pankavich, Stephen, 2018. "A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 141-155.
    5. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    6. Kaiyuan Sun & Andrea Baronchelli & Nicola Perra, 2015. "Contrasting effects of strong ties on SIR and SIS processes in temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Zhu, He & Ma, Jing & Li, Shan, 2019. "Effects of online and offline interaction on rumor propagation in activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1124-1135.
    3. Han, Dun & Shao, Qi & Li, Dandan & Sun, Mei, 2020. "How the individuals’ risk aversion affect the epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 369(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    2. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    3. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    4. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    5. An, Xuming & Ding, Li & Hu, Ping, 2020. "Information propagation with individual attention-decay effect on activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    7. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    8. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    9. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    10. Zijun Qie & Lili Rong, 2017. "An integrated relative risk assessment model for urban disaster loss in view of disaster system theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 165-190, August.
    11. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    12. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    13. Han, Dun & Sun, Mei, 2016. "An evolutionary vaccination game in the modified activity driven network by considering the closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 49-57.
    14. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    15. Hanjue Xia & Johannes Horn & Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Mirjam Kretzschmar & Rafael Mikolajczyk, 2021. "Effects of incomplete inter-hospital network data on the assessment of transmission dynamics of hospital-acquired infections," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-18, May.
    16. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.
    17. Masoud Shakiba & Azam Zavvari & Nader Aleebrahim & Mandeep Jit Singh, 2016. "Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 591-614, October.
    18. Fang, Fanshu & Ma, Jing & Li, Yanli, 2023. "The coevolution of the spread of a disease and competing opinions in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    19. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    20. Massimo Riccaboni & Anna Romiti & Gianna Giudicati, 2011. "Co-experience Network Dynamics: Lessons from the Dance Floor," DISA Working Papers 2011/02, Department of Computer and Management Sciences, University of Trento, Italy, revised 28 Mar 2011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:311-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.