IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v556y2020ics0378437120304180.html
   My bibliography  Save this article

Information propagation with individual attention-decay effect on activity-driven networks

Author

Listed:
  • An, Xuming
  • Ding, Li
  • Hu, Ping

Abstract

More consideration on individual attribute or behavior has been recognized as the important segment for a comprehensive understanding of information propagation. In this paper, we investigate the impacts of individual attention-decay effect on dynamical process under the framework of activity-driven network. In order to explicitly describe the attention-decay, a modified model incorporating sub-infected (or decay) status based on SIR is proposed. In the current model, infected individuals may reduce their attentions towards information at a state-dependent decay rate formulated by threshold model, which is determined by the time-varying state of their neighbors. Whereafter, outbreak thresholds of information dynamics under different circumstances are obtained and the comparison with the classic model is also carried out accordingly. The results show that the introduction of attention-decay effect greatly interferes with the outbreak threshold and prevalence scale of information. Extensive numerical simulations are presented to illustrate the validity and efficiency of our theoretical results.

Suggested Citation

  • An, Xuming & Ding, Li & Hu, Ping, 2020. "Information propagation with individual attention-decay effect on activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  • Handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120304180
    DOI: 10.1016/j.physa.2020.124815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304180
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    2. Zhu, He & Ma, Jing & Li, Shan, 2019. "Effects of online and offline interaction on rumor propagation in activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1124-1135.
    3. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2018. "Rumor and authoritative information propagation model considering super spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 395-411.
    4. Hu, Yuhan & Pan, Qiuhui & Hou, Wenbing & He, Mingfeng, 2018. "Rumor spreading model considering the proportion of wisemen in the crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1084-1094.
    5. Parolo, Pietro Della Briotta & Pan, Raj Kumar & Ghosh, Rumi & Huberman, Bernardo A. & Kaski, Kimmo & Fortunato, Santo, 2015. "Attention decay in science," Journal of Informetrics, Elsevier, vol. 9(4), pages 734-745.
    6. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    7. Zhao, Danling & Sun, Jianbin & Tan, Yuejin & Wu, Jianhong & Dou, Yajie, 2018. "An extended SEIR model considering homepage effect for the information propagation of online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1019-1031.
    8. Kaiyuan Sun & Andrea Baronchelli & Nicola Perra, 2015. "Contrasting effects of strong ties on SIR and SIS processes in temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingli & Qin, Simeng & Zhu, Xiaoxia, 2021. "Information diffusion under public crisis in BA scale-free network based on SEIR model — Taking COVID-19 as an example," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Ping Yu & Peiwen Wang & Zhiping Wang & Jia Wang, 2022. "Supply Chain Risk Diffusion Model Considering Multi-Factor Influences under Hypernetwork Vision," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Xu, Jiuping & Nekovee, Maziar & Li, Zongmin, 2022. "The impact of official rumor-refutation information on the dynamics of rumor spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Sang, Chun-Yan & Liao, Shi-Gen, 2020. "Modeling and simulation of information dissemination model considering user’s awareness behavior in mobile social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Jing, Wenjun & Li, Yi & Zhang, Xiaoqin & Zhang, Juping & Jin, Zhen, 2022. "A rumor spreading pairwise model on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    4. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    5. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The effect of individual attitude on cooperation in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    6. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    7. Tian, Yong & Ding, Xuejun, 2019. "Rumor spreading model with considering debunking behavior in emergencies," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    8. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    9. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    10. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    11. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    12. Hugo Horta, 2023. "Emerging and Near Future Challenges of Higher Education in East Asia," Asian Economic Policy Review, Japan Center for Economic Research, vol. 18(2), pages 171-191, July.
    13. Lian, Ying & Liu, Yijun & Dong, Xuefan, 2020. "Strategies for controlling false online information during natural disasters: The case of Typhoon Mangkhut in China," Technology in Society, Elsevier, vol. 62(C).
    14. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    15. Tóth, István & Lázár, Zsolt I. & Varga, Levente & Járai-Szabó, Ferenc & Papp, István & Florian, Răzvan V. & Ercsey-Ravasz, Mária, 2021. "Mitigating ageing bias in article level metrics using citation network analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    16. Colavizza, Giovanni & Franceschet, Massimo, 2016. "Clustering citation histories in the Physical Review," Journal of Informetrics, Elsevier, vol. 10(4), pages 1037-1051.
    17. Li, Dandan & Qian, Wenqi & Sun, Xiaoxiao & Han, Dun & Sun, Mei, 2023. "Rumor spreading in a dual-relationship network with diverse propagation abilities," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    18. Francisco Grimaldo & Mario Paolucci & Jordi Sabater-Mir, 2018. "Reputation or peer review? The role of outliers," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1421-1438, September.
    19. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Hu, Jun & Xia, Chengyi & Li, Huijia & Zhu, Peican & Xiong, Wenjun, 2020. "Properties and structural analyses of USA’s regional electricity market: A visibility graph network approach," Applied Mathematics and Computation, Elsevier, vol. 385(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120304180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.