IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v349y2019icp134-147.html
   My bibliography  Save this article

The impact of awareness diffusion on SIR-like epidemics in multiplex networks

Author

Listed:
  • Wang, Zhishuang
  • Guo, Quantong
  • Sun, Shiwen
  • Xia, Chengyi

Abstract

The epidemic diseases have been threatening to human health, and it is of high importance to understand the properties of epidemic propagation among the population will help us to take some effective measures to prevent and control epidemic spreading. In this paper, we propose a novel epidemic model by using two-layer multiplex networks to investigate the multiple influence between awareness diffusion and epidemic propagation, where the upper layer represents the awareness diffusion regarding epidemics and the lower layer expresses the epidemic propagation. In the process of awareness diffusion, the unaware individuals will be aware of the epidemics if the ratio between their awareness neighbors and their degrees reaches the specified ratio. For the epidemic spreading in the lower layer, we use the classical SIR(susceptible-infected-recovered) model. We derive the epidemic threshold by using Micro-Markov chain approach. The analytical results indicate that the epidemic threshold is correlated with the awareness diffusion as well as the topology of epidemic networks. Finally, the simulation results further demonstrate the properties of epidemic propagation and validate the analytical results.

Suggested Citation

  • Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
  • Handle: RePEc:eee:apmaco:v:349:y:2019:i:c:p:134-147
    DOI: 10.1016/j.amc.2018.12.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318311068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    2. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    3. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    4. Xia, Cheng-yi & Wang, Zhen & Sanz, Joaquin & Meloni, Sandro & Moreno, Yamir, 2013. "Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1577-1585.
    5. Li, Hui-Jia & Bu, Zhan & Li, Yulong & Zhang, Zhongyuan & Chu, Yanchang & Li, Guijun & Cao, Jie, 2018. "Evolving the attribute flow for dynamical clustering in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 20-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    2. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2019. "A variant of the current flow betweenness centrality and its application in urban networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 600-615.
    3. Wang, Weiping & Guo, Junjiang & Wang, Zhen & Wang, Hao & Cheng, Jun & Wang, Chunyang & Yuan, Manman & Kurths, Jürgen & Luo, Xiong & Gao, Yang, 2021. "Abnormal flow detection in industrial control network based on deep reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Keng, Ying Ying & Kwa, Kiam Heong & Ratnavelu, Kurunathan, 2021. "Centrality analysis in a drug network and its application to drug repositioning," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    5. Giacopelli, G. & Migliore, M. & Tegolo, D., 2020. "Graph-theoretical derivation of brain structural connectivity," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    6. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    7. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    8. Curado, Manuel & Tortosa, Leandro & Vicent, Jose F., 2021. "Identifying mobility patterns by means of centrality algorithms in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    9. da Cunha, Éverton Fernandes & da Fontoura Costa, Luciano, 2022. "On hypercomplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    10. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    12. Zhu, Linhe & Liu, Mengxue & Li, Yimin, 2019. "The dynamics analysis of a rumor propagation model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 118-137.
    13. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    14. Yao, Hongxing & Memon, Bilal Ahmed, 2019. "Network topology of FTSE 100 Index companies: From the perspective of Brexit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1248-1262.
    15. Wang, Shuangyan & Cheng, Wuyi, 2019. "Novel method for spreading information with fewer resources in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 15-29.
    16. Liu, Wanping & Wu, Xiao & Yang, Wu & Zhu, Xiaofei & Zhong, Shouming, 2019. "Modeling cyber rumor spreading over mobile social networks: A compartment approach," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 214-229.
    17. Bodaghi, Amirhosein & Goliaei, Sama & Salehi, Mostafa, 2019. "The number of followings as an influential factor in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 167-184.
    18. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    19. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    20. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:349:y:2019:i:c:p:134-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.