IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v324y2018icp141-155.html
   My bibliography  Save this article

A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation

Author

Listed:
  • Diaz, Paul
  • Constantine, Paul
  • Kalmbach, Kelsey
  • Jones, Eric
  • Pankavich, Stephen

Abstract

A modified, deterministic SEIR model is developed for the 2014 Ebola epidemic occurring in the West African nations of Guinea, Liberia, and Sierra Leone. The model describes the dynamical interaction of susceptible and infected populations, while accounting for the effects of hospitalization and the spread of disease through interactions with deceased, but infectious, individuals. Using data from the World Health Organization (WHO), parameters within the model are fit to recent estimates of infected and deceased cases from each nation. The model is then analyzed using these parameter values. Finally, several metrics are proposed to determine which of these nations is in greatest need of additional resources to combat the spread of infection. These include local and global sensitivity metrics of both the infected population and the basic reproduction number with respect to rates of hospitalization and proper burial.

Suggested Citation

  • Diaz, Paul & Constantine, Paul & Kalmbach, Kelsey & Jones, Eric & Pankavich, Stephen, 2018. "A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 141-155.
  • Handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:141-155
    DOI: 10.1016/j.amc.2017.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine, Paul G. & Diaz, Paul, 2017. "Global sensitivity metrics from active subspaces," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Ebola

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandru Topîrceanu, 2023. "On the Impact of Quarantine Policies and Recurrence Rate in Epidemic Spreading Using a Spatial Agent-Based Model," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    2. Dantas, Eber & Tosin, Michel & Cunha Jr, Americo, 2018. "Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 249-259.
    3. Cen Song & Sijia Zhou & Kyle Hunt & Jun Zhuang, 2022. "Comprehensive Evolution Analysis of Public Perceptions Related to Pediatric Care: A Sina Weibo Case Study (2013–2020)," SAGE Open, , vol. 12(1), pages 21582440221, March.
    4. Dun, Han & Shuting, Yan & She, Han & Lingfei, Qian & Chris, Ampimah Benjamin, 2019. "Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 311-318.
    5. Abdallah Al-Husban & Noureddine Djenina & Rania Saadeh & Adel Ouannas & Giuseppe Grassi, 2023. "A New Incommensurate Fractional-Order COVID 19: Modelling and Dynamical Analysis," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    6. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    7. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    8. Liu, Liya & Jiang, Daqing & Hayat, Tasawar, 2021. "Dynamics of an SIR epidemic model with varying population sizes and regime switching in a two patch setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Wong, Chun Yui & Seshadri, Pranay & Parks, Geoffrey, 2021. "Extremum sensitivity analysis with polynomial Monte Carlo filtering," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Jianan Chen & Hao Yu & Haocheng Xu & Qiang Lv & Zongqiang Zhu & Hao Chen & Feiyang Zhao & Wenbin Yu, 2024. "Investigation on Traffic Carbon Emission Factor Based on Sensitivity and Uncertainty Analysis," Energies, MDPI, vol. 17(7), pages 1-14, April.
    5. Antoniadis, Anestis & Lambert-Lacroix, Sophie & Poggi, Jean-Michel, 2021. "Random forests for global sensitivity analysis: A selective review," Reliability Engineering and System Safety, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:141-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.