IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0010056.html
   My bibliography  Save this article

Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review

Author

Listed:
  • Emmanuelle Sylvestre
  • Clarisse Joachim
  • Elsa Cécilia-Joseph
  • Guillaume Bouzillé
  • Boris Campillo-Gimenez
  • Marc Cuggia
  • André Cabié

Abstract

Background: Traditionally, dengue surveillance is based on case reporting to a central health agency. However, the delay between a case and its notification can limit the system responsiveness. Machine learning methods have been developed to reduce the reporting delays and to predict outbreaks, based on non-traditional and non-clinical data sources. The aim of this systematic review was to identify studies that used real-world data, Big Data and/or machine learning methods to monitor and predict dengue-related outcomes. Methodology/Principal findings: We performed a search in PubMed, Scopus, Web of Science and grey literature between January 1, 2000 and August 31, 2020. The review (ID: CRD42020172472) focused on data-driven studies. Reviews, randomized control trials and descriptive studies were not included. Among the 119 studies included, 67% were published between 2016 and 2020, and 39% used at least one novel data stream. The aim of the included studies was to predict a dengue-related outcome (55%), assess the validity of data sources for dengue surveillance (23%), or both (22%). Most studies (60%) used a machine learning approach. Studies on dengue prediction compared different prediction models, or identified significant predictors among several covariates in a model. The most significant predictors were rainfall (43%), temperature (41%), and humidity (25%). The two models with the highest performances were Neural Networks and Decision Trees (52%), followed by Support Vector Machine (17%). We cannot rule out a selection bias in our study because of our two main limitations: we did not include preprints and could not obtain the opinion of other international experts. Conclusions/Significance: Combining real-world data and Big Data with machine learning methods is a promising approach to improve dengue prediction and monitoring. Future studies should focus on how to better integrate all available data sources and methods to improve the response and dengue management by stakeholders. Author summary: Dengue is one of the most important arbovirus infections in the world and its public health, societal and economic burden is increasing. Although the majority of dengue cases are asymptomatic or mild, severe disease forms can lead to death. For this reason, early diagnosis and monitoring of dengue are crucial to decrease mortality. However, most endemic regions still rely on traditional monitoring methods, despite the growing availability of novel data sources and data-driven methods based on real-world data, Big Data, and machine learning algorithms. In this systematic review, we identified and analyzed studies that used these novel approaches for dengue monitoring and/or prediction. We found that novel data streams, such as Internet search engines and social media platforms, and machine learning methods can be successfully used to improve dengue management, but are still vastly ignored in real life. These approaches should be combined with traditional methods to help stakeholders better prepare for each outbreak and improve early responsiveness.

Suggested Citation

  • Emmanuelle Sylvestre & Clarisse Joachim & Elsa Cécilia-Joseph & Guillaume Bouzillé & Boris Campillo-Gimenez & Marc Cuggia & André Cabié, 2022. "Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 16(1), pages 1-22, January.
  • Handle: RePEc:plo:pntd00:0010056
    DOI: 10.1371/journal.pntd.0010056
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010056
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0010056&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0010056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0010056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.