IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0012679.html
   My bibliography  Save this article

Quantitative modelling for dengue and Aedes mosquitoes in Africa: A systematic review of current approaches and future directions for Early Warning System development

Author

Listed:
  • Lembris Laanyuni Njotto
  • Wilfred Senyoni
  • Ottmar Cronie
  • Michael Alifrangis
  • Anna-Sofie Stensgaard

Abstract

The rapid spread and growing number of dengue cases worldwide, alongside the absence of comprehensive vaccines and medications, highlights the critical need for robust tools to monitor, prevent, and control the disease. This review aims to provide an updated overview of important covariates and quantitative modelling techniques used to predict or forecast dengue and/or its vector Aedes mosquitoes in Africa. A systematic search was conducted across multiple databases, including PubMed, EMBASE, EBSCOhost, and Scopus, restricted to studies conducted in Africa and published in English. Data management and extraction process followed the ‘Preferred Reporting Items for Systematic Reviews and Meta-Analyses’ (PRISMA) framework. The review identified 30 studies, with the majority (two-thirds) focused on models for predicting Aedes mosquito populations dynamics as a proxy for dengue risk. The remainder of the studies utilized human dengue cases, incidence or prevalence data as an outcome. Input data for mosquito and dengue risk models were mainly obtained from entomological studies and cross-sectional surveys, respectively. More than half of the studies (56.7%) incorporated climatic factors, such as rainfall, humidity, and temperature, alongside environmental, demographic, socio-economic, and larval/pupal abundance factors as covariates in their models. Regarding quantitative modelling techniques, traditional statistical regression methods like logistic and linear regression were preferred (60.0%), followed by machine learning models (16.7%) and mixed effects models (13.3%). Notably, only 36.7% of the models disclosed variable selection techniques, and a mere 20.0% conducted model validation, highlighting a significant gap in reporting methodology and assessing model performance. Overall, this review provides a comprehensive overview of potential covariates and methodological approaches currently applied in the African context for modelling dengue and/or its vector, Aedes mosquito. It also underscores the gaps and challenges posed by limited surveillance data availability, which hinder the development of predictive models to be used as early warning systems in Africa.Author summary: Infections from dengue and other arboviral mosquito-borne diseases transmitted by Aedes mosquitoes are on the rise globally, with Africa being no exception. Their advances are driven by anthropogenic factors, such as rapid urbanisation, globalisation, and climate change. Yet, knowledge of dengue epidemiology and burden on the African continent, and how to enhance preparedness is scarce. Navigating the complexities of predicting the spread/outbreaks of the dengue or the presence/abundance of Aedes vector mosquitoes, is challenging due to the complex interactions between multiple factors involved in the transmission. Despite these challenges, significant progress has been made in developing various quantitative methods to predict spread and outbreaks in different regions in the world. Here, we conducted a systematic review to shed light on existing quantitative modelling approaches for dengue and/or its vector Aedes mosquitoes in Africa, focusing on methodology, data sources, covariates used, model performance and validation. Our study revealed several shortcomings in current modelling practices in Africa and emphasized the need for real-time primary predictor data and more comprehensive reporting of model development techniques and validation processes. This review offers an evidence-based framework for improving future modelling practices, to develop more accurate and robust dengue prediction models, tailored for African contexts.

Suggested Citation

  • Lembris Laanyuni Njotto & Wilfred Senyoni & Ottmar Cronie & Michael Alifrangis & Anna-Sofie Stensgaard, 2024. "Quantitative modelling for dengue and Aedes mosquitoes in Africa: A systematic review of current approaches and future directions for Early Warning System development," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 18(11), pages 1-22, November.
  • Handle: RePEc:plo:pntd00:0012679
    DOI: 10.1371/journal.pntd.0012679
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0012679
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012679&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0012679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Aditya Lia Ramadona & Lutfan Lazuardi & Yien Ling Hii & Åsa Holmner & Hari Kusnanto & Joacim Rocklöv, 2016. "Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    3. Claudia Buhler & Volker Winkler & Silvia Runge-Ranzinger & Ross Boyce & Olaf Horstick, 2019. "Environmental methods for dengue vector control – A systematic review and meta-analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(7), pages 1-15, July.
    4. Tzong-Shiann Ho & Ting-Chia Weng & Jung-Der Wang & Hsieh-Cheng Han & Hao-Chien Cheng & Chun-Chieh Yang & Chih-Hen Yu & Yen-Jung Liu & Chien Hsiang Hu & Chun-Yu Huang & Ming-Hong Chen & Chwan-Chuen Kin, 2020. "Comparing machine learning with case-control models to identify confirmed dengue cases," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(11), pages 1-21, November.
    5. Andrew J. Monaghan & K. M. Sampson & D. F. Steinhoff & K. C. Ernst & K. L. Ebi & B. Jones & M. H. Hayden, 2018. "The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti," Climatic Change, Springer, vol. 146(3), pages 487-500, February.
    6. Emmanuelle Sylvestre & Clarisse Joachim & Elsa Cécilia-Joseph & Guillaume Bouzillé & Boris Campillo-Gimenez & Marc Cuggia & André Cabié, 2022. "Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 16(1), pages 1-22, January.
    7. Annelise Tran & Grégory L'Ambert & Guillaume Lacour & Romain Benoît & Marie Demarchi & Myriam Cros & Priscilla Cailly & Mélaine Aubry-Kientz & Thomas Balenghien & Pauline Ezanno, 2013. "A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations," IJERPH, MDPI, vol. 10(5), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    2. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    3. Jan C. Semenza, 2015. "Prototype Early Warning Systems for Vector-Borne Diseases in Europe," IJERPH, MDPI, vol. 12(6), pages 1-19, June.
    4. Chathurika Hettiarachchige & Stefan von Cavallar & Timothy Lynar & Roslyn I Hickson & Manoj Gambhir, 2018. "Risk prediction system for dengue transmission based on high resolution weather data," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    5. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    6. Bernard Bett & Delia Grace & Hu Suk Lee & Johanna Lindahl & Hung Nguyen-Viet & Pham-Duc Phuc & Nguyen Huu Quyen & Tran Anh Tu & Tran Dac Phu & Dang Quang Tan & Vu Sinh Nam, 2019. "Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    7. Suyanne Freire de Macêdo & Kellyanne Abreu Silva & Renata Borges de Vasconcelos & Izautina Vasconcelos de Sousa & Lyvia Patrícia Soares Mesquita & Roberta Duarte Maia Barakat & Hélida Melo Conrado Fer, 2021. "Scaling up of Eco-Bio-Social Strategy to Control Aedes aegypti in Highly Vulnerable Areas in Fortaleza, Brazil: A Cluster, Non-Randomized Controlled Trial Protocol," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    8. Oswaldo Santos Baquero & Lidia Maria Reis Santana & Francisco Chiaravalloti-Neto, 2018. "Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-12, April.
    9. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.
    10. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    11. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    13. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    14. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    15. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    16. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    17. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    18. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    19. Emma Taylor-Salmon & Verity Hill & Lauren M. Paul & Robert T. Koch & Mallery I. Breban & Chrispin Chaguza & Afeez Sodeinde & Joshua L. Warren & Sylvia Bunch & Natalia Cano & Marshall Cone & Sarah Eyso, 2024. "Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0012679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.