IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0050972.html
   My bibliography  Save this article

The Incubation Periods of Dengue Viruses

Author

Listed:
  • Miranda Chan
  • Michael A Johansson

Abstract

Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation periods (EIP and IIP), in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25°C, and 2 and 15 days at 30°C, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3 and 10. Differences between serotypes were not identified for either incubation period. These incubation period models should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of dengue virus transmission.

Suggested Citation

  • Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
  • Handle: RePEc:plo:pone00:0050972
    DOI: 10.1371/journal.pone.0050972
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050972
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050972&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0050972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Eslaine S. & Miranda, José G.V. & Saba, Hugo & Skalinski, Lacita M. & Araújo, Marcio L.V. & Veiga, Rafael V. & Costa, Maria da Conceição N. & Cardim, Luciana L. & Paixão, Enny S. & Teixeira, M, 2023. "Complex network analysis of arboviruses in the same geographic domain: Differences and similarities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Kazi Mizanur Rahman & Yushuf Sharker & Reza Ali Rumi & Mahboob-Ul Islam Khan & Mohammad Sohel Shomik & Muhammad Waliur Rahman & Sk Masum Billah & Mahmudur Rahman & Peter Kim Streatfield & David Harley, 2020. "An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study," IJERPH, MDPI, vol. 17(24), pages 1-9, December.
    3. Tay, Chai Jian & Fakhruddin, Muhammad & Fauzi, Ilham Saiful & Teh, Su Yean & Syamsuddin, Muhammad & Nuraini, Nuning & Soewono, Edy, 2022. "Dengue epidemiological characteristic in Kuala Lumpur and Selangor, Malaysia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 489-504.
    4. Mateus C, Rafael & Zuluaga, Susana Alvarez & Orozco, Mariajose Franco & Marín, Paula Alejandra Escudero, 2021. "Modeling the propagation of the Dengue, Zika and Chikungunya virus in the city of Bello using Agent-Based Modeling and Simulation," OSF Preprints wmxzd, Center for Open Science.
    5. Abidemi, A. & Abd Aziz, M.I. & Ahmad, R., 2020. "Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    7. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    8. Dantas, Eber & Tosin, Michel & Cunha Jr, Americo, 2018. "Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 249-259.
    9. Villela, Daniel A.M., 2016. "Analysis of the vectorial capacity of vector-borne diseases using moment-generating functions," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 1-8.
    10. Rotem Ben-Shachar & Scott Schmidler & Katia Koelle, 2016. "Drivers of Inter-individual Variation in Dengue Viral Load Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-26, November.
    11. Bao-Linh Tran & Wei-Chun Tseng & Chi-Chung Chen & Shu-Yi Liao, 2020. "Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    12. López, L. & Dommar, C. & San José, A. & Meyers, L. & Fox, S. & Castro, L. & Rodó, X., 2023. "Changing risk of arboviral emergence in Catalonia due to higher probability of autochthonous outbreaks," Ecological Modelling, Elsevier, vol. 477(C).
    13. Brito da Cruz, Artur M.C. & Rodrigues, Helena Sofia, 2021. "Personal protective strategies for dengue disease: Simulations in two coexisting virus serotypes scenarios," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 254-267.
    14. Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
    15. Lingcai Kong & Jinfeng Wang & Zhongjie Li & Shengjie Lai & Qiyong Liu & Haixia Wu & Weizhong Yang, 2018. "Modeling the Heterogeneity of Dengue Transmission in a City," IJERPH, MDPI, vol. 15(6), pages 1-21, May.
    16. Prasad Liyanage & Hasitha Tissera & Maquins Sewe & Mikkel Quam & Ananda Amarasinghe & Paba Palihawadana & Annelies Wilder-Smith & Valérie R. Louis & Yesim Tozan & Joacim Rocklöv, 2016. "A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka," IJERPH, MDPI, vol. 13(11), pages 1-21, November.
    17. Hao Gui & Sylvia Gwee & Jiayun Koh & Junxiong Pang, 2021. "Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    18. Judicaël Obame-Nkoghe & Boris Kevin Makanga & Sylvie Brizard Zongo & Aubin Armel Koumba & Prune Komba & Neil-Michel Longo-Pendy & Franck Mounioko & Rodolphe Akone-Ella & Lynda Chancelya Nkoghe-Nkoghe , 2023. "Urban Green Spaces and Vector-Borne Disease Risk in Africa: The Case of an Unclean Forested Park in Libreville (Gabon, Central Africa)," IJERPH, MDPI, vol. 20(10), pages 1-17, May.
    19. Paul C. Fenema & A. Georges L. Romme, 2020. "Latent organizing for responding to emergencies: foundations for research," Journal of Organization Design, Springer;Organizational Design Community, vol. 9(1), pages 1-16, December.
    20. Benito Chen-Charpentier, 2023. "Delays and Exposed Populations in Infection Models," Mathematics, MDPI, vol. 11(8), pages 1-22, April.
    21. Kiran Raj Awasthi & Mamata Sherpa Awasthi, 2019. "Reproductive Factors of Dengue and Chlamydia," Global Journal of Reproductive Medicine, Juniper Publishers Inc., vol. 6(4), pages 91-942:6, May.
    22. Yoon Ling Cheong & Katrin Burkart & Pedro J. Leitão & Tobia Lakes, 2013. "Assessing Weather Effects on Dengue Disease in Malaysia," IJERPH, MDPI, vol. 10(12), pages 1-16, November.
    23. Shaowei Sang & Wenwu Yin & Peng Bi & Honglong Zhang & Chenggang Wang & Xiaobo Liu & Bin Chen & Weizhong Yang & Qiyong Liu, 2014. "Predicting Local Dengue Transmission in Guangzhou, China, through the Influence of Imported Cases, Mosquito Density and Climate Variability," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0050972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.