IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000358.html
   My bibliography  Save this article

Complex network analysis of arboviruses in the same geographic domain: Differences and similarities

Author

Listed:
  • Santos, Eslaine S.
  • Miranda, José G.V.
  • Saba, Hugo
  • Skalinski, Lacita M.
  • Araújo, Marcio L.V.
  • Veiga, Rafael V.
  • Costa, Maria da Conceição N.
  • Cardim, Luciana L.
  • Paixão, Enny S.
  • Teixeira, Maria Glória
  • Andrade, Roberto F.S.
  • Barreto, Maurício L.

Abstract

Arbovirus can cause diseases with a broad spectrum from mild to severe and long-lasting symptoms, affecting humans worldwide and therefore considered a public health problem with global and diverse socio-economic impacts. Understanding how they spread within and across different regions is necessary to devise strategies to control and prevent new outbreaks. Complex network approaches have widespread use to get important insights on several phenomena, as the spread of these viruses within a given region. This work uses the motif-synchronization methodology to build time varying complex networks based on data of registered infections caused by Zika, chikungunya, and dengue virus from 2014 to 2020, in 417 cities of the state of Bahia, Brazil. The resulting network sets capture new information on the spread of the diseases that are related to the time delay in the synchronization of the time series among different municipalities. Thus the work adds new and important network-based insights to previous results based on dengue dataset in the period 2001–2016. The most frequent synchronization delay time between time series in different cities, which control the insertion of edges in the networks, ranges 7 to 14 days, a period that is compatible with the time of the individual-mosquito-individual transmission cycle of these diseases. As the used data covers the initial periods of the first Zika and chikungunya outbreaks, our analyses reveal an increasing monotonic dependence between distance among cities and the time delay for synchronization between the corresponding time series. The same behavior was not observed for dengue, first reported in the region back in 1986, either in the previously 2001–2016 based results or in the current work. These results show that, as the number of outbreaks accumulates, different strategies must be adopted to combat the dissemination of arbovirus infections.

Suggested Citation

  • Santos, Eslaine S. & Miranda, José G.V. & Saba, Hugo & Skalinski, Lacita M. & Araújo, Marcio L.V. & Veiga, Rafael V. & Costa, Maria da Conceição N. & Cardim, Luciana L. & Paixão, Enny S. & Teixeira, M, 2023. "Complex network analysis of arboviruses in the same geographic domain: Differences and similarities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000358
    DOI: 10.1016/j.chaos.2023.113134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    2. Srivastav, Akhil Kumar & Yang, Junyuan & Luo, XiaoFeng & Ghosh, Mini, 2019. "Spread of Zika virus disease on complex network—A mathematical study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 15-38.
    3. Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Paul C. Fenema & A. Georges L. Romme, 2020. "Latent organizing for responding to emergencies: foundations for research," Journal of Organization Design, Springer;Organizational Design Community, vol. 9(1), pages 1-16, December.
    3. Tay, Chai Jian & Fakhruddin, Muhammad & Fauzi, Ilham Saiful & Teh, Su Yean & Syamsuddin, Muhammad & Nuraini, Nuning & Soewono, Edy, 2022. "Dengue epidemiological characteristic in Kuala Lumpur and Selangor, Malaysia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 489-504.
    4. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    5. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    6. Abidemi, A. & Abd Aziz, M.I. & Ahmad, R., 2020. "Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Brito da Cruz, Artur M.C. & Rodrigues, Helena Sofia, 2021. "Personal protective strategies for dengue disease: Simulations in two coexisting virus serotypes scenarios," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 254-267.
    8. Judicaël Obame-Nkoghe & Boris Kevin Makanga & Sylvie Brizard Zongo & Aubin Armel Koumba & Prune Komba & Neil-Michel Longo-Pendy & Franck Mounioko & Rodolphe Akone-Ella & Lynda Chancelya Nkoghe-Nkoghe , 2023. "Urban Green Spaces and Vector-Borne Disease Risk in Africa: The Case of an Unclean Forested Park in Libreville (Gabon, Central Africa)," IJERPH, MDPI, vol. 20(10), pages 1-17, May.
    9. Yoon Ling Cheong & Katrin Burkart & Pedro J. Leitão & Tobia Lakes, 2013. "Assessing Weather Effects on Dengue Disease in Malaysia," IJERPH, MDPI, vol. 10(12), pages 1-16, November.
    10. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    11. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    13. Villela, Daniel A.M., 2016. "Analysis of the vectorial capacity of vector-borne diseases using moment-generating functions," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 1-8.
    14. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    15. Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    16. Kazi Mizanur Rahman & Yushuf Sharker & Reza Ali Rumi & Mahboob-Ul Islam Khan & Mohammad Sohel Shomik & Muhammad Waliur Rahman & Sk Masum Billah & Mahmudur Rahman & Peter Kim Streatfield & David Harley, 2020. "An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study," IJERPH, MDPI, vol. 17(24), pages 1-9, December.
    17. Mateus C, Rafael & Zuluaga, Susana Alvarez & Orozco, Mariajose Franco & Marín, Paula Alejandra Escudero, 2021. "Modeling the propagation of the Dengue, Zika and Chikungunya virus in the city of Bello using Agent-Based Modeling and Simulation," OSF Preprints wmxzd, Center for Open Science.
    18. Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
    19. Gong, Jing & Wu, Yong-Ping & Li, Li, 2019. "Parameters estimation in Ebola virus transmission dynamics model based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    20. Raja, Muhammad Asif Zahoor & Mehmood, Ammara & Ashraf, Sadia & Awan, Khalid Mahmood & Shi, Peng, 2022. "Design of evolutionary finite difference solver for numerical treatment of computer virus propagation with countermeasures model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 409-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.