IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1268-d1633196.html
   My bibliography  Save this article

Dynamical Analysis of an Economic-Environment Model with Unilateral and Bilateral Control

Author

Listed:
  • Jing Xu

    (School of Mathematics and Statistics, Hubei Normal University, Huangshi 435000, China)

  • Mingzhan Huang

    (School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China)

  • Jingen Yang

    (School of Mathematics and Statistics, Huanghui University, Zhumadian 463000, China)

Abstract

Air pollution is one of the most important environmental problems in the world, it does harm to human health as well as hindering the sustainable development of the economy. The grim situation deserves wide attention and active participation in improvement. Thus, in this paper, considering the pollution control and sustainable development of the economy, we develop and investigate the economic-environment model with unilateral and bilateral control. To begin with, we briefly describe the dynamic behavior of the free system. It then follows the analysis of the system with unilateral and bilateral control. The existence of the order-1 and order-2 periodic solutions are investigated under different conditions. In addition, their stability is proven. The results show that the bilateral control strategy is beneficial to the sustainable development of economy.

Suggested Citation

  • Jing Xu & Mingzhan Huang & Jingen Yang, 2025. "Dynamical Analysis of an Economic-Environment Model with Unilateral and Bilateral Control," Mathematics, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1268-:d:1633196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2015. "Pollution diffusion and abatement activities across space and over time," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 48-63.
    2. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    3. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    4. Xiaochun Zhao & Laichun Long & Qun Sun & Wei Zhang, 2022. "How to Evaluate Investment Efficiency of Environmental Pollution Control: Evidence from China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    5. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    6. Wang, Miao & Feng, Chao, 2021. "The win-win ability of environmental protection and economic development during China's transition," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bella, Giovanni & Liuzzi, Danilo & Mattana, Paolo & Venturi, Beatrice, 2020. "Equilibrium selection in an environmental growth model with a S-shaped production function," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Christoph Hambel & Holger Kraft & Frederick van der Ploeg, 2024. "Asset Diversification Versus Climate Action," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(3), pages 1323-1355, August.
    3. Simone Marsiglio & Marco Tolotti, 2018. "Endogenous growth and technological progress with innovation driven by social interactions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(2), pages 293-328, March.
    4. Reinders, Henk Jan & Schoenmaker, Dirk & van Dijk, Mathijs, 2023. "A finance approach to climate stress testing," Journal of International Money and Finance, Elsevier, vol. 131(C).
    5. Alberto Bucci & Davide La Torre & Danilo Liuzzi & Simone Marsiglio, 2023. "A network‐based economic growth model with endogenous migration and poverty traps," Metroeconomica, Wiley Blackwell, vol. 74(4), pages 833-857, November.
    6. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    7. Roman G. Smirnov & Kunpeng Wang, 2017. "In search of a new economic model determined by logistic growth," Papers 1711.02625, arXiv.org, revised Oct 2018.
    8. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    9. Johan Eyckmans & Michael Finus, 2006. "New roads to international environmental agreements: the case of global warming," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 391-414, December.
    10. Dawid, Herbert & Kopel, Michael, 1997. "On the Economically Optimal Exploitation of a Renewable Resource: The Case of a Convex Environment and a Convex Return Function," Journal of Economic Theory, Elsevier, vol. 76(2), pages 272-297, October.
    11. Francesco Bartaloni, 2021. "Existence of the Optimum in Shallow Lake Type Models with Hysteresis Effect," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 358-392, August.
    12. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    13. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    14. Gerhard Sorger, 1997. "Markov-perfect Nash equilibria in a class of resource games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(1), pages 79-100.
    15. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    16. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    17. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    18. Rogna, Marco & Vogt, Carla J., 2021. "Accounting for inequality aversion can justify the 2° C goal," Ruhr Economic Papers 925, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Bretschger, Lucas, 2021. "Getting the Costs of Environmental Protection Right: Why Climate Policy Is Inexpensive in the End," Ecological Economics, Elsevier, vol. 188(C).
    20. Winkler, Harald & Baumert, Kevin & Blanchard, Odile & Burch, Sarah & Robinson, John, 2007. "What factors influence mitigative capacity?," Energy Policy, Elsevier, vol. 35(1), pages 692-703, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1268-:d:1633196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.