IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Markov Perfect Nash Equilibria in a Class of Resource Games

Listed author(s):
  • Gerhard Sorger

A standard model of the exploitation of a renewable resource by non-cooperating agents is considered. Under the assumption that the resource is sufficiently productive we prove that there exist infinitely many Markov-perfect Nash equilibria (MPNE). Although these equilibria lead to overexploitation of the resource (tragedy of the commons) it is shown that for any T > 0 there exist MPNE with the property that the resource stock stays in an arbitrary small neighborhood of the efficient steady state for at least T time periods. Furthermore, we derive a necessary and sufficient condition for maximal exploitation of the resource to qualify as a MPNE and show that this condition is satisfied if there are sufficiently many players, or if the players are sufficiently impatient, or if the capacity of each player is sufficiently high. On analyse un modèle standard de l'exploitation des ressources renouvelables par des agents non-coopératifs. Dans le cas où les ressources sont suffisamment productives, on démontre l'existence d'un continuum d'équilibres Markov-parfaits de Nasch (EMPN). Quoique ces équilibres entrainent la surconsommation des ressources, on peut prouver que pour chaque T > 0, il y a des EMPN ayant la propriété que le stock de ressources demeure dans un voisinage arbitrairement petit de l'état stationnaire optimal pendant au moins T périodes. De plus, on obtient une condition nécessaire et suffisante pour que l'exploitation maximale des ressources soit un EMPN. On démontre que cette condition est vérifiée dans le cas où soit il y a beaucoup d'agents, soit les agents sont impatients, soit la capacité de chaque agent est grande.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 96s-15.

in new window

Length: 30 pages
Date of creation: 01 Apr 1996
Handle: RePEc:cir:cirwor:96s-15
Contact details of provider: Postal:
1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8

Phone: (514) 985-4000
Fax: (514) 985-4039
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
  2. Benhabib, Jess & Radner, Roy, 1992. "The Joint Exploitation of a Productive Asset: A Game-Theoretic Approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(2), pages 155-190, April.
  3. Dockner, Engelbert J. & Sorger, Gerhard, 1996. "Existence and Properties of Equilibria for a Dynamic Game on Productive Assets," Journal of Economic Theory, Elsevier, vol. 71(1), pages 209-227, October.
  4. Dutta, Prajit K & Sundaram, Rangarajan, 1992. "Markovian Equilibrium in a Class of Stochastic Games: Existence Theorems for Discounted and Undiscounted Models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(2), pages 197-214, April.
  5. Reinganum, Jennifer F & Stokey, Nancy L, 1985. "Oligopoly Extraction of a Common Property Natural Resource: The Importance of the Period of Commitment in Dynamic Games," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 161-173, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:96s-15. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.