IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i6p963-d1612453.html
   My bibliography  Save this article

Modeling Information Diffusion on Social Media: The Role of the Saturation Effect

Author

Listed:
  • Julia Atienza-Barthelemy

    (Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, Spain)

  • Juan C. Losada

    (Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, Spain)

  • Rosa M. Benito

    (Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, Spain)

Abstract

In an era where social media shapes public opinion, understanding information spreading is key to grasping its broader impact. This paper explores the intricacies of information diffusion on Twitter, emphasizing the significant influence of content saturation on user engagement and retweet behaviors. We introduce a diffusion model that quantifies the likelihood of retweeting relative to the number of accounts a user follows. Our findings reveal a significant negative correlation where users following many accounts are less likely to retweet, suggesting a saturation effect in which exposure to information overload reduces engagement. We validate our model through simulations, demonstrating its ability to replicate real-world retweet network characteristics, including diffusion size and structural properties. Additionally, we explore this saturation effect on the temporal behavior of retweets, revealing that retweet intervals follow a stretched exponential distribution, which better captures the gradual decline in engagement over time. Our results underscore the competitive nature of information diffusion in social networks, where tweets have short lifespans and are quickly replaced by new information. This study contributes to a deeper understanding of content propagation mechanisms, offering a model with broad applicability across contexts, and highlights the importance of information overload in structural and temporal social media dynamics.

Suggested Citation

  • Julia Atienza-Barthelemy & Juan C. Losada & Rosa M. Benito, 2025. "Modeling Information Diffusion on Social Media: The Role of the Saturation Effect," Mathematics, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:963-:d:1612453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/6/963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/6/963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borondo, J. & Morales, A.J. & Benito, R.M. & Losada, J.C., 2015. "Multiple leaders on a multilayer social media," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 90-98.
    2. Yanchao Liu & Pengzhou Zhang & Lei Shi & Junpeng Gong, 2023. "A Survey of Information Dissemination Model, Datasets, and Insight," Mathematics, MDPI, vol. 11(17), pages 1-30, August.
    3. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    4. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    2. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    3. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    4. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    5. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    6. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    7. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    8. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2020. "The information content of funds from operations and net income in real estate investment trusts," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    9. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    10. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    11. repec:lan:wpaper:2935 is not listed on IDEAS
    12. Subir K. Chakrabarti & Srikant Devaraj & Pankaj C. Patel, 2021. "Minimum wage and restaurant hygiene violations: Evidence from Seattle," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(1), pages 85-99, January.
    13. Coll Martínez, Eva & Arauzo Carod, Josep Maria, 2015. "Creative Industries: a Preliminary Insight to their Location Determinants," Working Papers 2072/250133, Universitat Rovira i Virgili, Department of Economics.
    14. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    15. Christopher Jeffords, 2014. "Preference-directed regulation when ethical environmental policy choices are formed with limited information," Empirical Economics, Springer, vol. 46(2), pages 573-606, March.
    16. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    17. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    18. Tue Gørgens & Dean Robert Hyslop, 2018. "The Specification of Dynamic Discrete-Time Two-State Panel Data Models," Econometrics, MDPI, vol. 7(1), pages 1-16, December.
    19. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    20. Philip G. Gayle & Zijun Luo, 2015. "Choosing between Order-of-Entry Assumptions in Empirical Entry Models: Evidence from Competition between Burger King and McDonald's Restaurant Outlets," Journal of Industrial Economics, Wiley Blackwell, vol. 63(1), pages 129-151, March.
    21. Stephen Coate & Michael Conlin, 2002. "Voter Turnout: Theory and Evidence from Texas Liquor Referenda," NBER Working Papers 8720, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:963-:d:1612453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.