IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i2p67-d1665363.html
   My bibliography  Save this article

The Gamma Distribution and Inventory Control: Disruptive Lead Times Under Conventional and Nonclassical Conditions

Author

Listed:
  • John E. Tyworth

    (Department of Supply Chain and Information Systems, Smeal College of Business, Pennsylvania State University, University Park, PA 16802, USA)

Abstract

Background : Foundational research on the gamma distribution and inventory control highlighted its flexibility and practicality for managing fast-moving finished goods. Nonetheless, concerns remain about conventional statistical approximations of lead-time demand (LTD) distributions. Real-world lead times often result in nonstandard LTD forms, and traditional methods may introduce parameter mismatches under nonclassical conditions. Despite these challenges, this research demonstrates that a gamma LTD approximation is an effective method for managing these goods. Methods : This study employs numerical experiments to assess accuracy at high service levels, focusing on errors in system cost and product availability. Three propositions are validated: (1) a standard distribution generally characterizes the demands of fast-moving items; (2) demand variability systematically modifies the form of nonstandard LTD distributions, enhancing accuracy; (3) nonclassical conditions generally improve the accuracy of properly parameterized gamma approximations. A purposive sample of disruptive lead-time distributions found in global maritime supply chains drives numerical experiments. Results : Externally validated evidence provides the following findings within our study context: (1) a nonstandard lead-time distribution does not necessarily result in a similar LTD distribution, as it also depends on demand variability; (2) demand variability positively affects the form of a nonstandard LTD distribution under conventional conditions, with nonclassical conditions enhancing this effect; (3) the shape transformations almost always improve the accuracy of a gamma approximation. Conclusions : A gamma LTD approximation can manage inventory for fast-moving finished goods effectively, even with disruptive lead times under both conventional and nonclassical conditions.

Suggested Citation

  • John E. Tyworth, 2025. "The Gamma Distribution and Inventory Control: Disruptive Lead Times Under Conventional and Nonclassical Conditions," Logistics, MDPI, vol. 9(2), pages 1-23, May.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:67-:d:1665363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/2/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/2/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B R Cobb, 2013. "Mixture distributions for modelling demand during lead time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(2), pages 217-228, February.
    2. A A Syntetos & J E Boylan & J D Croston, 2005. "On the categorization of demand patterns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 495-503, May.
    3. Tadikamalla, Pandu R, 1984. "A comparison of several approximations to the lead time demand distribution," Omega, Elsevier, vol. 12(6), pages 575-581.
    4. Eric T. Anderson & Gavan J. Fitzsimons & Duncan Simester, 2006. "Measuring and Mitigating the Costs of Stockouts," Management Science, INFORMS, vol. 52(11), pages 1751-1763, November.
    5. Thomas Wensing & Heinrich Kuhn, 2015. "Analysis of production and inventory systems when orders may cross over," Annals of Operations Research, Springer, vol. 231(1), pages 265-281, August.
    6. Silver, Edward A. & Robb, David J., 2008. "Some insights regarding the optimal reorder period in periodic review inventory systems," International Journal of Production Economics, Elsevier, vol. 112(1), pages 354-366, March.
    7. Disney, Stephen M. & Maltz, Arnold & Wang, Xun & Warburton, Roger D.H., 2016. "Inventory management for stochastic lead times with order crossovers," European Journal of Operational Research, Elsevier, vol. 248(2), pages 473-486.
    8. Fang, Xin & Zhang, Cheng & Robb, David J. & Blackburn, Joseph D., 2013. "Decision support for lead time and demand variability reduction," Omega, Elsevier, vol. 41(2), pages 390-396.
    9. Eliezer Naddor, 1978. "Note--Sensitivity to Distributions in Inventory Systems," Management Science, INFORMS, vol. 24(16), pages 1769-1772, December.
    10. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    11. Vernimmen, Bert & Dullaert, Wout & Willemé, Peter & Witlox, Frank, 2008. "Using the inventory-theoretic framework to determine cost-minimizing supply strategies in a stochastic setting," International Journal of Production Economics, Elsevier, vol. 115(1), pages 248-259, September.
    12. John Patrick Saldanha & Peter Swan, 2017. "Order Crossover Research: A 60‐Year Retrospective to Highlight Future Research Opportunities," Transportation Journal, John Wiley & Sons, vol. 56(3), pages 227-262, July.
    13. Tyworth, John E., 2018. "A note on lead-time paradoxes and a tale of competing prescriptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 139-150.
    14. Kropf, Andreas & Sauré, Philip, 2014. "Fixed costs per shipment," Journal of International Economics, Elsevier, vol. 92(1), pages 166-184.
    15. Rossetti, Manuel D. & Yasin Ünlü, 2011. "Evaluating the robustness of lead time demand models," International Journal of Production Economics, Elsevier, vol. 134(1), pages 159-176, November.
    16. Chatfield, Dean C. & Pritchard, Alan M., 2018. "Crossover aware base stock decisions for service-driven systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 312-330.
    17. Heuts, R.M.J. & van Lieshout, J.T.H.C. & Baken, K., 1986. "An inventory model : What is the influence of the shape of the lead time demand distribution?," Research Memorandum FEW 205, Tilburg University, School of Economics and Management.
    18. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    19. Chun†Miin (Jimmy) Chen & Douglas J. Thomas, 2018. "Inventory Allocation in the Presence of Service†Level Agreements," Production and Operations Management, Production and Operations Management Society, vol. 27(3), pages 553-577, March.
    20. Bartezzaghi, Emilio & Verganti, Roberto & Zotteri, Giulio, 1999. "Measuring the impact of asymmetric demand distributions on inventories," International Journal of Production Economics, Elsevier, vol. 60(1), pages 395-404, April.
    21. John E. Tyworth & Liam O'Neill, 1997. "Robustness of the normal approximation of lead‐time demand in a distribution setting," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(2), pages 165-186, March.
    22. Gary D. Eppen & R. Kipp Martin, 1988. "Determining Safety Stock in the Presence of Stochastic Lead Time and Demand," Management Science, INFORMS, vol. 34(11), pages 1380-1390, November.
    23. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
    24. Cobb, Barry R. & Johnson, Alan W. & Rumí, Rafael & Salmerón, Antonio, 2015. "Accurate lead time demand modeling and optimal inventory policies in continuous review systems," International Journal of Production Economics, Elsevier, vol. 163(C), pages 124-136.
    25. Heuts, R.M.J. & van Lieshout, J.T.H.C. & Baken, K., 1986. "An inventory model : What is the influence of the shape of the lead time demand distribution?," Other publications TiSEM a72f9e6b-aecb-4355-b4dc-8, Tilburg University, School of Economics and Management.
    26. Hayya, Jack C. & Bagchi, Uttarayan & Kim, Jeon G. & Sun, Daewon, 2008. "On static stochastic order crossover," International Journal of Production Economics, Elsevier, vol. 114(1), pages 404-413, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John P. Saldanha & Bradley S. Price & Douglas J. Thomas, 2023. "A nonparametric approach for setting safety stock levels," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1150-1168, April.
    2. Vernimmen, Bert & Dullaert, Wout & Willemé, Peter & Witlox, Frank, 2008. "Using the inventory-theoretic framework to determine cost-minimizing supply strategies in a stochastic setting," International Journal of Production Economics, Elsevier, vol. 115(1), pages 248-259, September.
    3. Chatfield, Dean C. & Pritchard, Alan M., 2018. "Crossover aware base stock decisions for service-driven systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 312-330.
    4. Minken, Harald & Johansen, Bjørn Gjerde, 2019. "A logistics cost function with explicit transport costs," Economics of Transportation, Elsevier, vol. 19(C), pages 1-1.
    5. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    6. Saldanha, John P., 2022. "Estimating the reorder point for a fill-rate target under a continuous review policy in the presence of non-standard lead-time demand distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Rossetti, Manuel D. & Yasin Ünlü, 2011. "Evaluating the robustness of lead time demand models," International Journal of Production Economics, Elsevier, vol. 134(1), pages 159-176, November.
    8. Alp Akcay & Bahar Biller & Sridhar Tayur, 2011. "Improved Inventory Targets in the Presence of Limited Historical Demand Data," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 297-309, July.
    9. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    10. Cobb, Barry R. & Johnson, Alan W. & Rumí, Rafael & Salmerón, Antonio, 2015. "Accurate lead time demand modeling and optimal inventory policies in continuous review systems," International Journal of Production Economics, Elsevier, vol. 163(C), pages 124-136.
    11. John E. Tyworth & Liam O'Neill, 1997. "Robustness of the normal approximation of lead‐time demand in a distribution setting," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(2), pages 165-186, March.
    12. Achin Srivastav & Sunil Agrawal, 2020. "On a single item single stage mixture inventory models with independent stochastic lead times," Operational Research, Springer, vol. 20(4), pages 2189-2227, December.
    13. Achin Srivastav & Sunil Agrawal, 2020. "Multi-objective optimization of mixture inventory system experiencing order crossover," Annals of Operations Research, Springer, vol. 290(1), pages 943-960, July.
    14. Turrini, Laura & Meissner, Joern, 2019. "Spare parts inventory management: New evidence from distribution fitting," European Journal of Operational Research, Elsevier, vol. 273(1), pages 118-130.
    15. Hellemans, Tim & Boute, Robert N. & Van Houdt, Benny, 2019. "Analysis of lead time correlation under a base-stock policy," European Journal of Operational Research, Elsevier, vol. 276(2), pages 519-535.
    16. Sarkar, Biswajit & Kar, Sumi & Basu, Kajla & Seo, Yong Won, 2023. "Is the online-offline buy-online-pickup-in-store retail strategy best among other product delivery strategies under variable lead time?," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    17. Tyworth, John E., 2018. "A note on lead-time paradoxes and a tale of competing prescriptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 139-150.
    18. Anne E. Lordahl & James H. Bookbinder, 1994. "Order‐statistic calculation, costs, and service in an (s, Q) inventory system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 81-97, February.
    19. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    20. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:67-:d:1665363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.