IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00443-5.html
   My bibliography  Save this article

A theoretical validation of the DDMRP reorder policy

Author

Listed:
  • Daniela Favaretto

    (Università Ca’ Foscari Venezia)

  • Alessandro Marin

    (Università Ca’ Foscari Venezia
    Qantica S.r.l.)

  • Marco Tolotti

    (Università Ca’ Foscari Venezia)

Abstract

A recent heuristic called Demand Driven MRP, widely implemented using modern ERP systems, proposes reorder policy based on buffers. Buffers are amounts of inventory positioned and set to control the net flow position, responding to stochastic demand and lead time. Our primary goal is to propose a theoretical foundation for such a heuristic approach. To this aim, we develop an optimization model inspired by the main principles behind the heuristic algorithm. Specifically, optimal policies are of the type (s(t), S(t)) with time-varying thresholds that react to short-run real orders. We introduce constraints related to the service levels, that are written as tail risk measures to ensure fulfillment of realized demand with a predetermined probability. Interestingly, it turns out that such constraints allow to analytically justify an empirical rule that the DDMRP employs to set the risk parameters used in the heuristic. Finally, we use our model as a benchmark to theoretically validate and contextualize the aforementioned heuristic.

Suggested Citation

  • Daniela Favaretto & Alessandro Marin & Marco Tolotti, 2023. "A theoretical validation of the DDMRP reorder policy," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00443-5
    DOI: 10.1007/s10287-023-00443-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00443-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00443-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert S. Kaplan, 1970. "A Dynamic Inventory Model with Stochastic Lead Times," Management Science, INFORMS, vol. 16(7), pages 491-507, March.
    2. Tadikamalla, Pandu R, 1984. "A comparison of several approximations to the lead time demand distribution," Omega, Elsevier, vol. 12(6), pages 575-581.
    3. Horst Tempelmeier, 2013. "Stochastic Lot Sizing Problems," International Series in Operations Research & Management Science, in: J. MacGregor Smith & Barış Tan (ed.), Handbook of Stochastic Models and Analysis of Manufacturing System Operations, edition 127, chapter 0, pages 313-344, Springer.
    4. Chen, Frank Y. & Krass, Dmitry, 2001. "Inventory models with minimal service level constraints," European Journal of Operational Research, Elsevier, vol. 134(1), pages 120-140, October.
    5. Lawrence W. Robinson & James R. Bradley, 2008. "Note--Further Improvements on Base-Stock Approximations for Independent Stochastic Lead Times with Order Crossover," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 325-327, December.
    6. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.
    7. Osman Alp & Nesim K. Erkip & Refik Güllü, 2003. "Optimal Lot-Sizing/Vehicle-Dispatching Policies Under Stochastic Lead Times and Stepwise Fixed Costs," Operations Research, INFORMS, vol. 51(1), pages 160-166, February.
    8. Alfares, Hesham K., 2007. "Inventory model with stock-level dependent demand rate and variable holding cost," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 259-265, July.
    9. Romain Miclo & Matthieu Lauras & Franck Fontanili & Jacques Lamothe & Steven A. Melnyk, 2019. "Demand Driven MRP: assessment of a new approach to materials management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(1), pages 166-181, January.
    10. Paul Zipkin, 1986. "Stochastic leadtimes in continuous‐time inventory models," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(4), pages 763-774, November.
    11. Alin Constantin RADASANU, 2016. "Inventory Management, Service Level And Safety Stock," Journal of Public Administration, Finance and Law, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 9(9), pages 145-153, June.
    12. Laura A. Orobia & Joweria Nakibuuka & Juma Bananuka & Richard Akisimire, 2020. "Inventory management, managerial competence and financial performance of small businesses," Journal of Accounting in Emerging Economies, Emerald Group Publishing Limited, vol. 10(3), pages 379-398, May.
    13. Baptiste Bahu & Laurent Bironneau & Vincent Hovelaque, 2019. "Compréhension du DDMRP et de son adoption : premiers éléments empiriques," Post-Print halshs-02024594, HAL.
    14. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    15. So, Kut C. & Zheng, Xiaona, 2003. "Impact of supplier's lead time and forecast demand updating on retailer's order quantity variability in a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 86(2), pages 169-179, November.
    16. Hayya, Jack C. & Harrison, Terry P. & Chatfield, Dean C., 2009. "A solution for the intractable inventory model when both demand and lead time are stochastic," International Journal of Production Economics, Elsevier, vol. 122(2), pages 595-605, December.
    17. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    18. Jing, Fuying & Chao, Xiangrui, 2021. "A dynamic lot size model with perishable inventory and stockout," Omega, Elsevier, vol. 103(C).
    19. Gary D. Eppen & R. Kipp Martin, 1988. "Determining Safety Stock in the Presence of Stochastic Lead Time and Demand," Management Science, INFORMS, vol. 34(11), pages 1380-1390, November.
    20. Chan-Ju Lee & Suk-Chul Rim, 2019. "A Mathematical Safety Stock Model for DDMRP Inventory Replenishment," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Favaretto & Alessandro Marin & Marco Tolotti, 2021. "A data-driven and risk-based prudential approach to validate the DDMRP planning and control system," Working Papers 09, Department of Management, Università Ca' Foscari Venezia.
    2. Achin Srivastav & Sunil Agrawal, 2020. "On a single item single stage mixture inventory models with independent stochastic lead times," Operational Research, Springer, vol. 20(4), pages 2189-2227, December.
    3. Disney, Stephen M. & Maltz, Arnold & Wang, Xun & Warburton, Roger D.H., 2016. "Inventory management for stochastic lead times with order crossovers," European Journal of Operational Research, Elsevier, vol. 248(2), pages 473-486.
    4. Chatfield, Dean C. & Pritchard, Alan M., 2018. "Crossover aware base stock decisions for service-driven systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 312-330.
    5. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    6. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.
    7. Roberto Rossi & S. Armagan Tarim & Ramesh Bollapragada, 2012. "Constraint-Based Local Search for Inventory Control Under Stochastic Demand and Lead Time," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 66-80, February.
    8. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    9. Thomas Wensing & Heinrich Kuhn, 2015. "Analysis of production and inventory systems when orders may cross over," Annals of Operations Research, Springer, vol. 231(1), pages 265-281, August.
    10. Hansen, Ole & Transchel, Sandra & Friedrich, Hanno, 2023. "Replenishment strategies for lost sales inventory systems of perishables under demand and lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 308(2), pages 661-675.
    11. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    12. Hayya, Jack C. & Harrison, Terry P. & He, X. James, 2011. "The impact of stochastic lead time reduction on inventory cost under order crossover," European Journal of Operational Research, Elsevier, vol. 211(2), pages 274-281, June.
    13. Kumar, Anupam & Evers, Philip T., 2015. "Setting safety stock based on imprecise records," International Journal of Production Economics, Elsevier, vol. 169(C), pages 68-75.
    14. Marcus Ang & Karl Sigman & Jing-Sheng Song & Hanqin Zhang, 2017. "Closed-Form Approximations for Optimal ( r , q ) and ( S , T ) Policies in a Parallel Processing Environment," Operations Research, INFORMS, vol. 65(5), pages 1414-1428, October.
    15. Riezebos, Jan, 2006. "Inventory order crossovers," International Journal of Production Economics, Elsevier, vol. 104(2), pages 666-675, December.
    16. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    17. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    18. Alp Muharremoglu & Nan Yang, 2010. "Inventory Management with an Exogenous Supply Process," Operations Research, INFORMS, vol. 58(1), pages 111-129, February.
    19. Vernimmen, Bert & Dullaert, Wout & Willemé, Peter & Witlox, Frank, 2008. "Using the inventory-theoretic framework to determine cost-minimizing supply strategies in a stochastic setting," International Journal of Production Economics, Elsevier, vol. 115(1), pages 248-259, September.
    20. Lawrence W. Robinson & James R. Bradley & L. Joseph Thomas, 2001. "Consequences of Order Crossover Under Order-Up-To Inventory Policies," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 175-188, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00443-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.