IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v127y2010i1p180-189.html
   My bibliography  Save this article

Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times

Author

Listed:
  • Rossi, Roberto
  • Tarim, S. Armagan
  • Hnich, Brahim
  • Prestwich, Steven

Abstract

In this paper we address the general multi-period production/inventory problem with non-stationary stochastic demand and supplier lead-time under service level constraints. A replenishment cycle policy (Rn,Sn) is modeled, where Rn is the nth replenishment cycle length and Sn is the respective order-up-to-level. We propose a stochastic constraint programming approach for computing the optimal policy parameters. In order to do so, a dedicated global chance-constraint and the respective filtering algorithm that enforce the required service level are presented. Our numerical examples show that a stochastic supplier lead-time significantly affects policy parameters with respect to the case in which the lead-time is assumed to be deterministic or absent.

Suggested Citation

  • Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.
  • Handle: RePEc:eee:proeco:v:127:y:2010:i:1:p:180-189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00191-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riezebos, Jan, 2006. "Inventory order crossovers," International Journal of Production Economics, Elsevier, vol. 104(2), pages 666-675, December.
    2. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    3. Christopher Nevison & Michael Burstein, 1984. "The Dynamic Lot-Size Model with Stochastic Lead Times," Management Science, INFORMS, vol. 30(1), pages 100-109, January.
    4. Robert S. Kaplan, 1970. "A Dynamic Inventory Model with Stochastic Lead Times," Management Science, INFORMS, vol. 16(7), pages 491-507, March.
    5. Tarim, S. Armagan & Kingsman, Brian G., 2004. "The stochastic dynamic production/inventory lot-sizing problem with service-level constraints," International Journal of Production Economics, Elsevier, vol. 88(1), pages 105-119, March.
    6. Joseph A. Hunt, 1965. "Balancing Accuracy and Simplicity in Determining Reorder Points," Management Science, INFORMS, vol. 12(4), pages 94-103, December.
    7. Gary D. Eppen & R. Kipp Martin, 1988. "Determining Safety Stock in the Presence of Stochastic Lead Time and Demand," Management Science, INFORMS, vol. 34(11), pages 1380-1390, November.
    8. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    9. Hayya, Jack C. & Bagchi, Uttarayan & Kim, Jeon G. & Sun, Daewon, 2008. "On static stochastic order crossover," International Journal of Production Economics, Elsevier, vol. 114(1), pages 404-413, July.
    10. Sridhar Bashyam & Michael C. Fu, 1998. "Optimization of (s, S) Inventory Systems with Random Lead Times and a Service Level Constraint," Management Science, INFORMS, vol. 44(12-Part-2), pages 243-256, December.
    11. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    12. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borodin, Valeria & Dolgui, Alexandre & Hnaien, Faicel & Labadie, Nacima, 2016. "Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 79-86.
    2. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    3. Taleizadeh, Ata Allah & Zarei, Hamid Reza & Sarker, Bhaba R., 2017. "An optimal control of inventory under probablistic replenishment intervals and known price increase," European Journal of Operational Research, Elsevier, vol. 257(3), pages 777-791.
    4. Hoque, M.A., 2013. "A vendor–buyer integrated production–inventory model with normal distribution of lead time," International Journal of Production Economics, Elsevier, vol. 144(2), pages 409-417.
    5. Heydari, Jafar & Mahmoodi, Mansour & Taleizadeh, Ata Allah, 2016. "Lead time aggregation: A three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 215-233.
    6. Louly, Mohamed-Aly & Dolgui, Alexandre, 2013. "Optimal MRP parameters for a single item inventory with random replenishment lead time, POQ policy and service level constraint," International Journal of Production Economics, Elsevier, vol. 143(1), pages 35-40.
    7. Wang, Xun & Disney, Stephen M. & Wang, Jing, 2012. "Stability analysis of constrained inventory systems with transportation delay," European Journal of Operational Research, Elsevier, vol. 223(1), pages 86-95.
    8. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:127:y:2010:i:1:p:180-189. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.