IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i1p153-d1023047.html
   My bibliography  Save this article

Walkability Measurement of 15-Minute Community Life Circle in Shanghai

Author

Listed:
  • Yue Yang

    (School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yongsheng Qian

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Junwei Zeng

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Xuting Wei

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Minan Yang

    (School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

Improvement of the walkability of the 15-min community life circle can enhance convenience for residents to obtain daily service facilities. In this paper, by obtaining the Point of Interest (POI) data of daily facilities used by Shanghai residents, we calculate the walk scores of community residents within 15-min walking distance using the walkability assessment tool and analyze the results with population density for spatial correlation. The results show that communities with high walk scores are concentrated in central areas, with low walk scores are scattered in the suburbs of the city. Walking scores are high for access from communities to bus stops and commercial services but low for access to parks and primary schools. The formation of a compact and accessible spatial layout can significantly improve the walkability of the community. Walkability is not only related to the construction of facilities in terms of quantity and space but is also influenced by the degree of spatial clustering in the community. It needs to be reasonably configured in conjunction with the spatial distribution of the community in order to effectively improve the utilization of facilities. Finally, community walkability is significantly and positively correlated with population density.

Suggested Citation

  • Yue Yang & Yongsheng Qian & Junwei Zeng & Xuting Wei & Minan Yang, 2023. "Walkability Measurement of 15-Minute Community Life Circle in Shanghai," Land, MDPI, vol. 12(1), pages 1-13, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:153-:d:1023047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    2. Su, Shiliang & Zhou, Hao & Xu, Mengya & Ru, Hu & Wang, Wen & Weng, Min, 2019. "Auditing street walkability and associated social inequalities for planning implications," Journal of Transport Geography, Elsevier, vol. 74(C), pages 62-76.
    3. Zhehao Zhang & Thomas Fisher & Gang Feng, 2020. "Assessing the Rationality and Walkability of Campus Layouts," Sustainability, MDPI, vol. 12(23), pages 1-21, December.
    4. Luyang Chen & Lingbo Liu & Hao Wu & Zhenghong Peng & Zhihao Sun, 2022. "Change of Residents’ Attitudes and Behaviors toward Urban Green Space Pre- and Post- COVID-19 Pandemic," Land, MDPI, vol. 11(7), pages 1-16, July.
    5. Bloom, David E. & Chen, Simiao & Kuhn, Michael & McGovern, Mark E. & Oxley, Les & Prettner, Klaus, 2020. "The economic burden of chronic diseases: Estimates and projections for China, Japan, and South Korea," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    6. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    7. Hu, Lirong & He, Shenjing & Han, Zixuan & Xiao, He & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2019. "Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies," Land Use Policy, Elsevier, vol. 82(C), pages 657-673.
    8. Khattak, Asad J. & Rodriguez, Daniel, 2005. "Travel behavior in neo-traditional neighborhood developments: A case study in USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(6), pages 481-500, July.
    9. Khaled Shaaban & Khadija Abdur-Rouf, 2020. "Assessing Walking and Cycling around Schools," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    10. Daniela D’Alessandro & Diego Valeri & Letizia Appolloni, 2020. "Reliability of T-WSI to Evaluate Neighborhoods Walkability and Its Changes over Time," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
    11. Shiqi Wang & Ang Li, 2022. "Impacts of COVID-19 Lockdown on Use and Perception of Urban Green Spaces and Demographic Group Differences," Land, MDPI, vol. 11(11), pages 1-18, November.
    12. Wang, Qian & Lan, Zili, 2019. "Park green spaces, public health and social inequalities: Understanding the interrelationships for policy implications," Land Use Policy, Elsevier, vol. 83(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Qiu & Yi Hua & Binwei Yun & Zhu Wang & Yi Zhou, 2023. "Public Space Planning in Urban Resettlement Community in China: Addressing Diverse Needs of Rural Migrants through Function Programming Based on Architectural Planning Theory," Land, MDPI, vol. 12(7), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qian & Lan, Zili, 2019. "Park green spaces, public health and social inequalities: Understanding the interrelationships for policy implications," Land Use Policy, Elsevier, vol. 83(C), pages 66-74.
    2. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    3. Hu, Lirong & He, Shenjing & Han, Zixuan & Xiao, He & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2019. "Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies," Land Use Policy, Elsevier, vol. 82(C), pages 657-673.
    4. Sheng Li & Yi Jiang & Shuisong Ke & Ke Nie & Chao Wu, 2021. "Understanding the Effects of Influential Factors on Housing Prices by Combining Extreme Gradient Boosting and a Hedonic Price Model (XGBoost-HPM)," Land, MDPI, vol. 10(5), pages 1-15, May.
    5. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    6. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    7. Dehui Shi & Meichen Fu, 2022. "How Does Rail Transit Affect the Spatial Differentiation of Urban Residential Prices? A Case Study of Beijing Subway," Land, MDPI, vol. 11(10), pages 1-19, October.
    8. Seungwoo Han, 2022. "Spatial stratification and socio-spatial inequalities: the case of Seoul and Busan in South Korea," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    9. Qingsong He & Miao Yan & Linzi Zheng & Bo Wang & Jiang Zhou, 2023. "The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector," Land, MDPI, vol. 12(4), pages 1-17, March.
    10. Ann Hartell, 2015. "Sprawl and Commuting: Exploring New Measures of United States Metro Regions," SRE-Disc sre-disc-2015_07, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    11. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    12. Mingshu Wang, 2021. "Polycentric urban development and urban amenities: Evidence from Chinese cities," Environment and Planning B, , vol. 48(3), pages 400-416, March.
    13. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    14. Chen, Simiao & Prettner, Klaus & Kuhn, Michael & Bloom, David E., 2021. "The economic burden of COVID-19 in the United States: Estimates and projections under an infection-based herd immunity approach," The Journal of the Economics of Ageing, Elsevier, vol. 20(C).
    15. Tingzhu Li & Ran Liu & Wei Qi, 2019. "Regional Heterogeneity of Migrant Rent Affordability Stress in Urban China: A Comparison between Skilled and Unskilled Migrants at Prefecture Level and Above," Sustainability, MDPI, vol. 11(21), pages 1-26, October.
    16. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    17. Xu Yang & Xuan Zou & Ming Li & Zeyu Wang, 2024. "The Decarbonization Effect of the Urban Polycentric Structure: Empirical Evidence from China," Land, MDPI, vol. 13(2), pages 1-17, February.
    18. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    19. Jiangtao Zhao & Li Liu & Ying Wang & Keming Tang & Miao Huo & Yang Zhao, 2023. "Evaluation of Sustainable Development of the Urban Ecological Environment and Its Coupling Relationship with Human Activities Based on Multi-Source Data," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    20. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:153-:d:1023047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.