IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp64-84.html
   My bibliography  Save this article

Automated drivability: Toward an assessment of the spatial deployment of level 4 automated vehicles

Author

Listed:
  • Soteropoulos, Aggelos
  • Mitteregger, Mathias
  • Berger, Martin
  • Zwirchmayr, Jakob

Abstract

Two scenarios have shaped the discussion on the deployment of automated vehicles (AVs). The first is the revolutionary or disruptive scenario, in which a competitor would reach fully automated vehicles (level 5) in one giant leap. The second scenario renders the deployment of AVs as a lengthy process of evolutionary vehicle automation, progressing from specialized, controlled and restricted conditions, i.e. operational design domains (ODDs), to ever more complex ones. But as it becomes more and more clear that there are large uncertainties about how far in the future level 5 AVs become available, in the near future situations in which the driver is replaced completely, i.e. not requiring driver interventions, only seem feasible in specific ODDs and cities will likely be faced by highly automated vehicles (level 4) equipped with automated driving systems (ADSs) for specific ODDs over a longer period. However, cities comprise different street spaces with various conditions which lead to different requirements for the ADSs and could affect the deployment of level 4 AVs and thus the impacts of AVs in cities in the near future. This paper presents a framework and related indicators for assessing the automated drivability, i.e. the suitability of street spaces for the functioning operation of ADSs from a technical-infrastructural point of view, based on the relationship between the current technological development state of ADSs and different (urban) street spaces. Using the case study of the city of Vienna in Austria to apply the framework, a set of indicators for the different components of the framework is calculated and integrated to build an automated drivability index (ADX), illustrating the automated drivability within the street network. The results are a first step to indicate which areas are more suitable for level 4 AVs from a technological point of view, as well as areas where a deployment of AVs would only be possible after larger adjustments of the infrastructure or at considerably lower than intended speeds; thus, detailing the complexity of driving urban street spaces in a yet unprecedented level. Besides other aspects this can give hints for policy makers and other stakeholders where to facilitate the deployment of AVs.

Suggested Citation

  • Soteropoulos, Aggelos & Mitteregger, Mathias & Berger, Martin & Zwirchmayr, Jakob, 2020. "Automated drivability: Toward an assessment of the spatial deployment of level 4 automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 64-84.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:64-84
    DOI: 10.1016/j.tra.2020.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419301855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Itf, 2018. "Safer Roads with Automated Vehicles?," International Transport Forum Policy Papers 55, OECD Publishing.
    2. Su, Shiliang & Zhou, Hao & Xu, Mengya & Ru, Hu & Wang, Wen & Weng, Min, 2019. "Auditing street walkability and associated social inequalities for planning implications," Journal of Transport Geography, Elsevier, vol. 74(C), pages 62-76.
    3. Kelly, C.E. & Tight, M.R. & Hodgson, F.C. & Page, M.W., 2011. "A comparison of three methods for assessing the walkability of the pedestrian environment," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1500-1508.
    4. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Infrastructure requirements for the safe operation of automated vehicles: Opinions from experts and stakeholders," Transport Policy, Elsevier, vol. 133(C), pages 209-222.
    2. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    3. Manivasakan, Hesavar & Kalra, Riddhi & O'Hern, Steve & Fang, Yihai & Xi, Yinfei & Zheng, Nan, 2021. "Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads – Current practice and a case study of Melbourne, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 36-53.
    4. Chayaporn Ngampravatdee & Koorosh Gharehbaghi & Amin Hosseinian-Far & Kong Fah Tee & Kerry McManus, 2023. "Strategic Initiatives for Large Transport Infrastructure Planning: Reinforcing Sustainability in Urban Transportation through Better Stakeholder Engagement," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    5. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    6. Sikai Chen & Shuya Zong & Tiantian Chen & Zilin Huang & Yanshen Chen & Samuel Labi, 2023. "A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    7. Sönke Beckmann & Sebastian Trojahn & Hartmut Zadek, 2023. "Process Model for the Introduction of Automated Buses," Sustainability, MDPI, vol. 15(19), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    2. Mitropoulos, Lambros & Karolemeas, Christos & Tsigdinos, Stefanos & Vassi, Avgi & Bakogiannis, Efthimios, 2023. "A composite index for assessing accessibility in urban areas: A case study in Central Athens, Greece," Journal of Transport Geography, Elsevier, vol. 108(C).
    3. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    4. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    5. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    6. Bridgelall, Raj & Patterson, Douglas A. & Tolliver, Denver D., 2020. "Policy implications of truck platooning and electrification," Energy Policy, Elsevier, vol. 139(C).
    7. Seungwoo Han, 2022. "Spatial stratification and socio-spatial inequalities: the case of Seoul and Busan in South Korea," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    8. Bo Zou & Pooria Choobchian & Julie Rozenberg, 2021. "Cyber resilience of autonomous mobility systems: cyber-attacks and resilience-enhancing strategies," Journal of Transportation Security, Springer, vol. 14(3), pages 137-155, December.
    9. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    10. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    11. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    12. Vanky, Anthony & Courtney, Theodore & Verma, Santosh & Ratti, Carlo, 2016. "One to Many: Opportunities to Understanding Collective Behaviors in Urban Environments Through Individual's Passively-Collected Locative Data," SocArXiv f7mpd, Center for Open Science.
    13. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    14. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    15. Shariful Malik & Mohammad Shahidul Hasan Swapan & Shahed Khan, 2020. "Sustainable Mobility through Safer Roads: Translating Road Safety Strategy into Local Context in Western Australia," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    16. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    17. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    18. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    19. Mohammad Hamed Abdi & Ali Soltani, 2022. "Which Fabric/Scale Is Better for Transit-Oriented Urban Design: Case Studies in a Developing Country," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    20. Tian Gao & Rui Song & Ling Zhu & Ling Qiu, 2019. "What Characteristics of Urban Green Spaces and Recreational Activities Do Self-Reported Stressed Individuals Like? A Case Study of Baoji, China," IJERPH, MDPI, vol. 16(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:64-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.