IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p588-d200152.html
   My bibliography  Save this article

Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland

Author

Listed:
  • Arto O Salonen

    (Faculty of Social Sciences and Business Studies, University of Eastern Finland, Kuopio 70211, Finland
    Smarter Mobility Innovation Hub, Metropolia University of Applied Sciences, Helsinki 00079, Finland)

  • Noora Haavisto

    (Smarter Mobility Innovation Hub, Metropolia University of Applied Sciences, Helsinki 00079, Finland)

Abstract

Autonomous vehicles, electrification, and ride-sharing appear to be the next big change in the field of mobility. It can lead to safer roads, less congestion, and reduced parking. In this research, we focus on real-life user experiences of a driverless shuttle bus. We are interested to know what kind of perceptions and feelings people have when they travel in an autonomous shuttle bus. Therefore, we apply Harry Triandis´ Theory of Interpersonal Behaviour (TIB), which recognizes that human behavior is not always rational. Human behaviour, and its change, is linked to the intention, the habitual responses, and the situational constraints and conditions. The qualitative data (n = 44) were collected in 2017 by semi-structured interviews in Espoo, Finland. The interviewees were passengers who travelled a predefined route in a driverless shuttle bus. We applied inductive content analysis. The findings were compared in the theoretical framework of TIB. According to the results, a lack of human driver was not a problem for the passengers. They were surprised how safe and secure they felt in the autonomous vehicle. More specifically, passengers´ perceptions were similar to when travelling by a metro or a tram, where a passenger rarely interacts with the driver, or even witnesses the existence of the driver. However, the results suggest that people are much more intolerant of accidents caused by autonomous vehicles than by humans. On a general level, positive attitudes towards autonomous vehicles can be supported by giving people possibilities to try autonomous vehicles in a safe, real-life environment. The decision whether to use a driverless shuttle bus or not correlates highly with the contextual factors. Route and flexibility are the most important reasons for behavioral changes.

Suggested Citation

  • Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:588-:d:200152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    2. Natasha Merat & Ruth Madigan & Sina Nordhoff, 2017. "Human Factors, User Requirements, and User Acceptance of Ride-Sharing in Automated Vehicles," International Transport Forum Discussion Papers 2017/10, OECD Publishing.
    3. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    4. Arto O. Salonen & Jani Siirilä & Mikko Valtonen, 2018. "Sustainable Living in Finland: Combating Climate Change in Everyday Life," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    5. Itf, 2018. "Safer Roads with Automated Vehicles?," International Transport Forum Policy Papers 55, OECD Publishing.
    6. Mustapha Harb & Yu Xiao & Giovanni Circella & Patricia L. Mokhtarian & Joan L. Walker, 2018. "Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment," Transportation, Springer, vol. 45(6), pages 1671-1685, November.
    7. Itf, 2015. "Urban Mobility System Upgrade: How shared self-driving cars could change city traffic," International Transport Forum Policy Papers 6, OECD Publishing.
    8. Hensher, David A., 2017. "Future bus transport contracts under a mobility as a service (MaaS) regime in the digital age: Are they likely to change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 86-96.
    9. Alexa Delbosc & Graham Currie, 2013. "Causes of Youth Licensing Decline: A Synthesis of Evidence," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 271-290, May.
    10. Azim Shariff & Jean-François Bonnefon & Iyad Rahwan, 2017. "Psychological roadblocks to the adoption of self-driving vehicles," Nature Human Behaviour, Nature, vol. 1(10), pages 694-696, October.
    11. Salonen, Arto O., 2018. "Passenger's subjective traffic safety, in-vehicle security and emergency management in the driverless shuttle bus in Finland," Transport Policy, Elsevier, vol. 61(C), pages 106-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreja Pucihar & Iztok Zajc & Radovan Sernec & Gregor Lenart, 2019. "Living Lab as an Ecosystem for Development, Demonstration and Assessment of Autonomous Mobility Solutions," Sustainability, MDPI, vol. 11(15), pages 1-21, July.
    2. Alexandra König & Christina Wirth & Jan Grippenkoven, 2021. "Generation Y’s Information Needs Concerning Sharing Rides in Autonomous Mobility on Demand Systems," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    3. Rosell, Jordi & Allen, Jaime, 2020. "Test-riding the driverless bus: Determinants of satisfaction and reuse intention in eight test-track locations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 166-189.
    4. Dengzhong Wang & Tongyu Sun & Anzheng Xie & Zhao Cheng, 2023. "Simulation Study on the Coupling Relationship between Traffic Network Model and Traffic Mobility under the Background of Autonomous Driving," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    5. Maciej Kruszyna & Jacek Makuch, 2023. "Mobility Nodes as an Extension of the Idea of Transfer Nodes—Solutions for Smaller Rail Stations with an Example from Poland," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    6. Jiawei Gui & Qunqi Wu, 2020. "Multiple Utility Analyses for Sustainable Public Transport Planning and Management: Evidence from GPS-Equipped Taxi Data in Haikou," Sustainability, MDPI, vol. 12(19), pages 1-46, September.
    7. M. Eugenia López-Lambas & Andrea Alonso, 2019. "The Driverless Bus: An Analysis of Public Perceptions and Acceptability," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    8. Wei Luo & Silong Wei & Yi Wang & Pengpeng Jiao, 2023. "People’s Intentions to Use Shared Autonomous Vehicles: An Extended Theory of Planned Behavior Model," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    9. Xiaobei Jiang & Wenlin Yu & Wenjie Li & Jiawen Guo & Xizheng Chen & Hongwei Guo & Wuhong Wang & Tao Chen, 2021. "Factors Affecting the Acceptance and Willingness-to-Pay of End-Users: A Survey Analysis on Automated Vehicles," Sustainability, MDPI, vol. 13(23), pages 1-12, November.
    10. Ralf-Martin Soe & Jaanus Müür, 2020. "Mobility Acceptance Factors of an Automated Shuttle Bus Last-Mile Service," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    11. Fabio Antonialli & Danielle Attias, 2019. "Social and economic impacts of Autonomous Shuttles for Collective Transport: an in- depth benchmark study," Post-Print hal-02489808, HAL.
    12. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    13. Sönke Beckmann & Sebastian Trojahn & Hartmut Zadek, 2023. "Process Model for the Introduction of Automated Buses," Sustainability, MDPI, vol. 15(19), pages 1-36, September.
    14. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.
    2. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    3. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    4. Fabio Antonialli & Danielle Attias, 2019. "Social and economic impacts of Autonomous Shuttles for Collective Transport: an in- depth benchmark study," Post-Print hal-02489808, HAL.
    5. Hopkins, Debbie & Stephenson, Janet, 2016. "The replication and reduction of automobility: Findings from Aotearoa New Zealand," Journal of Transport Geography, Elsevier, vol. 56(C), pages 92-101.
    6. Goletz, Mirko & Haustein, Sonja & Wolking, Christina & L’Hostis, Alain, 2020. "Intermodality in European metropolises: The current state of the art, and the results of an expert survey covering Berlin, Copenhagen, Hamburg and Paris," Transport Policy, Elsevier, vol. 94(C), pages 109-122.
    7. Liu, Peng & Xu, Zhigang & Zhao, Xiangmo, 2019. "Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 354-369.
    8. Ashmore, David P. & Pojani, Dorina & Thoreau, Roselle & Christie, Nicola & Tyler, Nicholas A., 2019. "Gauging differences in public transport symbolism across national cultures: implications for policy development and transfer," Journal of Transport Geography, Elsevier, vol. 77(C), pages 26-38.
    9. Jesper Bláfoss Ingvardson & Sigal Kaplan & João de Abreu e Silva & Floridea Ciommo & Yoram Shiftan & Otto Anker Nielsen, 2020. "Existence, relatedness and growth needs as mediators between mode choice and travel satisfaction: evidence from Denmark," Transportation, Springer, vol. 47(1), pages 337-358, February.
    10. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    11. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    12. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    13. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    14. Yan, Yingying & Zhong, Shiquan & Tian, Junfang & Li, Tong, 2022. "Continuance intention of autonomous buses: An empirical analysis based on passenger experience," Transport Policy, Elsevier, vol. 126(C), pages 85-95.
    15. Rosell, Jordi & Allen, Jaime, 2020. "Test-riding the driverless bus: Determinants of satisfaction and reuse intention in eight test-track locations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 166-189.
    16. Enoch, Marcus & Potter, Stephen, 2023. "MaaS (Mobility as a Service) market futures explored," Transport Policy, Elsevier, vol. 134(C), pages 31-40.
    17. Rodrigo Gandia & Fabio Antonialli & Isabelle Nicolaï & Joel Sugano & Julia Oliveira & Izabela Oliveira, 2021. "Casual Carpooling: A Strategy to Support Implementation of Mobility-as-a-Service in a Developing Country," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    18. Richard Grimal, 2018. "Are The Millenials Less Car-Oriented ? Literature Review And Empirical Findings," Post-Print hal-02164941, HAL.
    19. Nielsen, Thomas Alexander Sick & Haustein, Sonja, 2018. "On sceptics and enthusiasts: What are the expectations towards self-driving cars?," Transport Policy, Elsevier, vol. 66(C), pages 49-55.
    20. Ho, Chinh Q. & Hensher, David A. & Mulley, Corinne & Wong, Yale Z., 2018. "Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 302-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:588-:d:200152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.