IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p789-d603249.html
   My bibliography  Save this article

How to Evaluate the Green Utilization Efficiency of Cultivated Land in a Farming Household? A Case Study of Shandong Province, China

Author

Listed:
  • Yi Qu

    (School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China)

  • Xiao Lyu

    (School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
    School of Humanities and Law, Northeastern University, Shenyang 110169, China)

  • Wenlong Peng

    (School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China)

  • Zongfei Xin

    (School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China)

Abstract

The behavior of farming households is the most direct factor involved in the transition of cultivated land utilization from high-input/high-output to green and sustainable utilization mode. Improving farming households’ green utilization efficiency of cultivated land (GUECL) is of great significance in facilitating agricultural green development in China. However, there are few studies on GUECL based on the micro-perspective of farming households that cover the comprehensive benefits to the economy, ecology, and society. This paper builds a theoretical analysis framework of farming households’ green utilization of cultivated land and uses the super-efficiency EBM model and a questionnaire to conduct an empirical analysis of 952 farming households in Shandong Province to evaluate the green utilization efficiency of cultivated land. The results show that the GUECL of the farming households is generally not high, with an average value of 0.67, and can be further improved. The higher the GUECL, the lower the input and undesired output per unit yield and per unit output value. Tobit regression results show that a farming household’s per capita income is significantly positively correlated with the GUECL, while agricultural insurance, agricultural subsidies, cultivated land scale, cultivated land fragmentation, and regional economic level are significantly negatively correlated with the GUECL. In addition, recommendations can be made on promoting and innovating agricultural green development technology, popularizing and publicizing farming households’ thoughts on the green utilization of cultivated land, and ensuring and improving rural green life so as to provide a reference for promoting green transition of cultivated land utilization with diversified coordination and multiple measures.

Suggested Citation

  • Yi Qu & Xiao Lyu & Wenlong Peng & Zongfei Xin, 2021. "How to Evaluate the Green Utilization Efficiency of Cultivated Land in a Farming Household? A Case Study of Shandong Province, China," Land, MDPI, vol. 10(8), pages 1-18, July.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:789-:d:603249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Xie, Hualin & Chen, Qianru & Wang, Wei & He, Yafen, 2018. "Analyzing the green efficiency of arable land use in China," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 15-28.
    3. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    4. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Kui Yang & Taiyang Zhong & Yu Zhang & Qi Wen, 2020. "Total factor productivity of urban land use in China," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1784-1803, December.
    7. Wei Yu & Xiao Lu & Enru Wang, 2020. "Rural land reforms and villagers' preferences for urban settlement: A case study of Shandong Province, China," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1259-1276, September.
    8. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    9. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    10. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    12. Thomas W. Hertel, 2011. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?-super- 1," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 259-275.
    13. Skevas, Theodoros & Stefanou, Spiro E. & Oude Lansink, Alfons, 2014. "Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming," European Journal of Operational Research, Elsevier, vol. 237(2), pages 658-664.
    14. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    15. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    16. Bonfiglio, Andrea & Arzeni, Andrea & Bodini, Antonella, 2017. "Assessing eco-efficiency of arable farms in rural areas," Agricultural Systems, Elsevier, vol. 151(C), pages 114-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Zhang & Yaqiang Dai & Yuanyuan Chen & Xinli Ke, 2022. "Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-24, June.
    2. Mengna Li & Li Tan & Xi Yang, 2023. "The Impact of Environmental Regulation on Cultivated Land Use Eco-Efficiency: Evidence from China," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    3. Zhen Wang & Xiaoyu Zhang & Hui Lu & Xiaolan Kang & Bin Liu, 2023. "The Effect of Industrial Agglomeration on Agricultural Green Production Efficiency: Evidence from China," Sustainability, MDPI, vol. 15(16), pages 1-23, August.
    4. Min Zhou & Hua Zhang & Nan Ke, 2022. "Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models," IJERPH, MDPI, vol. 19(19), pages 1-20, October.
    5. Yuanhe Yu & Jinkuo Lin & Peixiang Zhou & Shuwei Zheng & Zijun Li, 2022. "Cultivated Land Input Behavior of Different Types of Rural Households and Its Impact on Cultivated Land-Use Efficiency: A Case Study of the Yimeng Mountain Area, China," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    6. Hua Zhang & Qiwang Zhang & Man An & Zixuan Zhang & Nanqiao He, 2023. "Unveiling the Impact of Digital Financial Inclusion on Low-Carbon Green Utilization of Farmland: The Roles of Farmland Transfer and Management Scale," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Min Zhou & Hua Zhang & Zixuan Zhang & Hanxiaoxue Sun, 2023. "Digital Financial Inclusion, Cultivated Land Transfer and Cultivated Land Green Utilization Efficiency: An Empirical Study from China," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    8. Min Zhou & Bing Kuang & Min Zhou & Nan Ke, 2022. "The Spatial and Temporal Evolution of the Coordination Degree in Regard to Farmland Transfer and Cultivated Land Green Utilization Efficiency in China," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    9. Xu Dong & Wensi Fu & Yali Yang & Chenguang Liu & Guizhi Xue, 2022. "Study on the Evaluation of Green Technology Innovation Efficiency and Its Influencing Factors in the Central Plains City Cluster of China," Sustainability, MDPI, vol. 14(17), pages 1-24, September.
    10. Min Zhou & Hanxiaoxue Sun & Nan Ke, 2022. "The Spatial and Temporal Evolution of Coordination Degree Concerning China’s Cultivated Land Green Utilization Efficiency and High-Quality Agricultural Development," Land, MDPI, vol. 12(1), pages 1-21, December.
    11. Yajuan Wang & Xi Wu & Hongbo Zhu, 2022. "Spatio-Temporal Pattern and Spatial Disequilibrium of Cultivated Land Use Efficiency in China: An Empirical Study Based on 342 Prefecture-Level Cities," Land, MDPI, vol. 11(10), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    2. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    3. Bampatsou, Christina & Halkos, George, 2019. "Economic growth, efficiency and environmental elasticity for the G7 countries," Energy Policy, Elsevier, vol. 130(C), pages 355-360.
    4. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    5. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    6. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.
    7. Ying Chen & Suran Li & Long Cheng, 2020. "Evaluation of Cultivated Land Use Efficiency with Environmental Constraints in the Dongting Lake Eco-Economic Zone of Hunan Province, China," Land, MDPI, vol. 9(11), pages 1-15, November.
    8. da Cruz, Nuno Ferreira & Marques, Rui Cunha, 2014. "Revisiting the determinants of local government performance," Omega, Elsevier, vol. 44(C), pages 91-103.
    9. Mansour Zarrin, 2023. "A mixed-integer slacks-based measure data envelopment analysis for efficiency measuring of German university hospitals," Health Care Management Science, Springer, vol. 26(1), pages 138-160, March.
    10. Min Zhou & Hua Zhang & Nan Ke, 2022. "Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models," IJERPH, MDPI, vol. 19(19), pages 1-20, October.
    11. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    12. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    13. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    14. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    15. Kristof De Witte & Rui Marques, 2010. "Designing performance incentives, an international benchmark study in the water sector," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 189-220, June.
    16. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    17. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    18. Zhicheng Lai & Lei Li & Zhuomin Tao & Tao Li & Xiaoting Shi & Jialing Li & Xin Li, 2023. "Spatio-Temporal Evolution and Influencing Factors of Ecological Well-Being Performance from the Perspective of Strong Sustainability: A Case Study of the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    19. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    20. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:789-:d:603249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.