IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p2882-d1060107.html
   My bibliography  Save this article

Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China

Author

Listed:
  • Da Gao

    (School of Law and Business, Wuhan Institute of Technology, Wuhan 430200, China)

  • Chang Liu

    (School of Economics, Huazhong University of Science and Technology, Wuhan 430070, China)

  • Xinyan Wei

    (School of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

  • Yang Liu

    (School of Economics, Huazhong University of Science and Technology, Wuhan 430070, China)

Abstract

The river chief system (RCS) is an autonomous environmental policy implemented by local governments in China that incorporates environmental responsibilities into the performance evaluation. Although existing literature suggests that RCS can reduce water pollution, the impact of RCS on energy efficiency has not been assessed. Therefore, this paper compiles data on industrial enterprises and industrial pollution in China from 2003 to 2013 and empirically examines the impact of RCS on green total factor energy efficiency (GTFEE) by using a multiple difference-in-difference approach. The results show that RCS significantly enhances firms’ GTFEE, and a series of tests confirm the robustness of the findings. Second, we further explore how RCS affects GTFEE, the mechanism tests conclude that the RCS improves GTFEE mainly through optimizing energy structure and promoting technological innovation. Third, compared with small firms, exporters, and firms in non-heavy polluting industries, the RCS has a greater effect on improving the GTFEE of large firms, non-exporters, and firms in heavily polluting industries. This study provides new and novel ideas for emerging countries to improve environmental policies and achieve sustainable development.

Suggested Citation

  • Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2882-:d:1060107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/2882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/2882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petia Topalova, 2010. "Factor Immobility and Regional Impacts of Trade Liberalization: Evidence on Poverty from India," American Economic Journal: Applied Economics, American Economic Association, vol. 2(4), pages 1-41, October.
    2. Zhang, Bing & Chen, Xiaolan & Guo, Huanxiu, 2018. "Does central supervision enhance local environmental enforcement? Quasi-experimental evidence from China," Journal of Public Economics, Elsevier, vol. 164(C), pages 70-90.
    3. Zhou, Sheng & Xu, Zhiwei, 2022. "Energy efficiency assessment of RCEP member states: A three-stage slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 253(C).
    4. Hong, Qianqian & Cui, Linhao & Hong, Penghui, 2022. "The impact of carbon emissions trading on energy efficiency: Evidence from quasi-experiment in China's carbon emissions trading pilot," Energy Economics, Elsevier, vol. 110(C).
    5. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    6. Du, Weijian & Li, Mengjie & Wang, Faming, 2020. "Role of rent-seeking or technological progress in maintaining the monopoly power of energy enterprises: An empirical analysis based on micro-data from China," Energy, Elsevier, vol. 202(C).
    7. Han, Zhi-Yong & Fan, Ying & Jiao, Jian-Ling & Yan, Ji-Sheng & Wei, Yi-Ming, 2007. "Energy structure, marginal efficiency and substitution rate: An empirical study of China," Energy, Elsevier, vol. 32(6), pages 935-942.
    8. Li, Shan & Liu, Jianjiang & Shi, Daqian, 2021. "The impact of emissions trading system on corporate energy efficiency: Evidence from a quasi-natural experiment in China," Energy, Elsevier, vol. 233(C).
    9. Aldieri, Luigi & Gatto, Andrea & Vinci, Concetto Paolo, 2021. "Evaluation of energy resilience and adaptation policies: An energy efficiency analysis," Energy Policy, Elsevier, vol. 157(C).
    10. Wen, Huwei & Liang, Weitao & Lee, Chien-Chiang, 2022. "Urban broadband infrastructure and green total-factor energy efficiency in China," Utilities Policy, Elsevier, vol. 79(C).
    11. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    12. Song, Malin & Xie, Qianjiao & Shen, Zhiyang, 2021. "Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints," Energy Policy, Elsevier, vol. 153(C).
    13. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    14. Zhang, Qi & Yu, Zhi & Kong, Dongmin, 2019. "The real effect of legal institutions: Environmental courts and firm environmental protection expenditure," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    15. Jie Ouyang & Kezhong Zhang & Bo Wen & Yuanping Lu, 2020. "Top-Down and Bottom-Up Approaches to Environmental Governance in China: Evidence from the River Chief System (RCS)," IJERPH, MDPI, vol. 17(19), pages 1-23, September.
    16. Li, Jing & Shi, Xing & Wu, Huaqing & Liu, Liwen, 2020. "Trade-off between economic development and environmental governance in China: An analysis based on the effect of river chief system," China Economic Review, Elsevier, vol. 60(C).
    17. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    18. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    19. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    20. Juan Wang & Xin Wan & Ruide Tu, 2022. "Game Analysis of the Evolution of Local Government’s River Chief System Implementation Strategy," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    21. Danish, & Ulucak, Recep, 2021. "A revisit to the relationship between financial development and energy consumption: Is globalization paramount?," Energy, Elsevier, vol. 227(C).
    22. Feng, Yidai & Liu, Yaobin & Yuan, Huaxi, 2022. "The spatial threshold effect and its regional boundary of new-type urbanization on energy efficiency," Energy Policy, Elsevier, vol. 164(C).
    23. Huang, Geng & He, Ling-Yun & Lin, Xi, 2022. "Robot adoption and energy performance: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 107(C).
    24. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    25. Liu, Mengdi & Shadbegian, Ronald & Zhang, Bing, 2017. "Does environmental regulation affect labor demand in China? Evidence from the textile printing and dyeing industry," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 277-294.
    26. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    27. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    28. Yinghong Li & Jiaxin Tong & Longfei Wang, 2020. "Full Implementation of the River Chief System in China: Outcome and Weakness," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    29. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    30. Matthew E. Kahn & Pei Li & Daxuan Zhao, 2015. "Water Pollution Progress at Borders: The Role of Changes in China's Political Promotion Incentives," American Economic Journal: Economic Policy, American Economic Association, vol. 7(4), pages 223-242, November.
    31. Proskuryakova, L. & Kovalev, A., 2015. "Measuring energy efficiency: Is energy intensity a good evidence base?," Applied Energy, Elsevier, vol. 138(C), pages 450-459.
    32. Daniel Bradley & Incheol Kim & Xuan Tian, 2017. "Do Unions Affect Innovation?," Management Science, INFORMS, vol. 63(7), pages 2251-2271, July.
    33. Xia Xu & Fengping Wu & Lina Zhang & Xin Gao, 2020. "Assessing the Effect of the Chinese River Chief Policy for Water Pollution Control under Uncertainty—Using Chaohu Lake as a Case," IJERPH, MDPI, vol. 17(9), pages 1-26, April.
    34. Zhang, Zibin & Ye, Jianliang, 2015. "Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China," Energy Economics, Elsevier, vol. 47(C), pages 87-97.
    35. Zihao Zhang & Chao Xiong & Yu Yang & Chunyan Liang & Shaoping Jiang, 2022. "What Makes the River Chief System in China Viable? Examples from the Huaihe River Basin," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    36. Sun, Chuanwang & Ding, Dan & Fang, Xingming & Zhang, Huiming & Li, Jianglong, 2019. "How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China's market," Energy, Elsevier, vol. 169(C), pages 637-645.
    37. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    38. Xiaoshu Xu & Yingying Cheng & Xuechen Meng, 2022. "River Chief System, Emission Abatement, and Firms’ Profits: Evidence from China’s Polluting Firms," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    39. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    40. Bu, Caiqi & Zhang, Kaixia & Shi, Daqian & Wang, Shuyu, 2022. "Does environmental information disclosure improve energy efficiency?," Energy Policy, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiachao Peng & Shuke Fu & Da Gao & Jiali Tian, 2023. "Greening China’s Growth: Assessing the Synergistic Impact of Financial Development and Technological Innovation on Environmental Pollution Reduction—A Spatial STIRPAT Analysis," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    2. Rui Ding & Fangcheng Sun, 2023. "Impact of River Chief System on Green Technology Innovation: Empirical Evidence from the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    3. Da Gao & Yanjun Cao & Chang Liu, 2023. "The Low-Carbon Policy and Urban Green Total Factor Energy Efficiency: Evidence from a Spatial Difference-in-Difference Method," IJERPH, MDPI, vol. 20(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Ruochan Xiong & Shigong Lv & Da Gao, 2022. "The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Shaoyan Yang & Duodong Ding & Churen Sun, 2022. "Does Innovative City Policy Improve Green Total Factor Energy Efficiency? Evidence from China," Sustainability, MDPI, vol. 14(19), pages 1-30, October.
    3. Haikuo Zhang & Chaobo Zhou, 2023. "Construction of the Pilot Free Trade Zone and Chinese Green Total Factor Energy Efficiency," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
    4. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    5. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    6. Feng, Yidai & Yuan, Huaxi & Liu, Yaobin & Zhang, Shaohui, 2023. "Does new-type urbanization policy promote green energy efficiency? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 124(C).
    7. Yuxi Chen & Mengting Zhang & Chencheng Wang & Xin Lin & Zhijie Zhang, 2023. "High-Tech Industrial Agglomeration, Government Intervention and Regional Energy Efficiency: Based on the Perspective of the Spatial Spillover Effect and Panel Threshold Effect," Sustainability, MDPI, vol. 15(7), pages 1-29, April.
    8. Zhuoxi Yu & Shan Liu & Zhichuan Zhu, 2022. "Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    9. Xu Ou & Haiwei Jiang, 2023. "The Impact of Environmental Regulation on Firm Performance: Evidence from the Pulp and Paper Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    10. Zhou, Chaobo & Qi, Shaozhou, 2022. "Has the pilot carbon trading policy improved China's green total factor energy efficiency?," Energy Economics, Elsevier, vol. 114(C).
    11. Tao Ma & Xiaoxi Cao, 2022. "FDI, technological progress, and green total factor energy productivity: evidence from 281 prefecture cities in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11058-11088, September.
    12. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).
    13. Yuexing Li & Jun Liu & Xuefei Wang & Jeffrey Yi-Lin Forrest, 2023. "Can Low-Carbon Pilot City Policies Improve Energy Efficiency? Evidence from China," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    14. Xiong, Yongqing & Cheng, Qian, 2023. "Effects of new energy vehicle adoption on provincial energy efficiency in China: From the perspective of regional imbalances," Energy, Elsevier, vol. 281(C).
    15. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    16. Ya Wu & Yin Liu & Minglong Zhang, 2023. "How Does Digital Finance Affect Energy Efficiency?—Characteristics, Mechanisms, and Spatial Effects," Sustainability, MDPI, vol. 15(9), pages 1-24, April.
    17. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    18. He, Zhenyu & Tang, Yuwei, 2023. "Local environmental constraints and firms’ export product quality: Evidence from China," Economic Modelling, Elsevier, vol. 124(C).
    19. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    20. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2882-:d:1060107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.