IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p165-d1011942.html
   My bibliography  Save this article

The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China’s Energy Planning Policy: Analysis Using a CGE Model

Author

Listed:
  • Haisheng Hu

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Wanhao Dong

    (School of Public Finance & Administration, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China)

Abstract

This study focuses on the effects of China’s carbon peaking policy, investigating how to balance nonfossil energy consumption and coal consumption to achieve China’s carbon peaking policy goal. The research applies the recursive dynamic computable general equilibrium model to simulate the impact of China’s energy planning policies using five scenarios to analyze the carbon emissions and economic effects of China’s energy planning policy from the perspectives of energy use, carbon emissions, the macroeconomy, and institutional income. The simulation results indicate that to achieve the goal of carbon peaking by 2030, the annual installed capacity of nonfossil energy must reach 112.29 gigawatts, and average annual coal consumption in the China 15th Five-Year Plan and 16th Five-Year Plan should be reduced by 20 million and 40 million tons, respectively, which will result in the proportion of nonfossil energy in primary energy consumption reaching about 25%. Limiting coal consumption will slow economic growth, whereas increasing the installed capacity of nonfossil energy will stimulate economic growth. The combined policies will have a significant impact on reducing carbon emissions and achieving the carbon peaking goal and will also offset the adverse effects of such policies on the macroeconomy.

Suggested Citation

  • Haisheng Hu & Wanhao Dong, 2022. "The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China’s Energy Planning Policy: Analysis Using a CGE Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:165-:d:1011942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    2. Shahbaz, Muhammad & Khan, Saleheen & Tahir, Mohammad Iqbal, 2013. "The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis," Energy Economics, Elsevier, vol. 40(C), pages 8-21.
    3. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    4. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    5. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    6. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    7. repec:dau:papers:123456789/11438 is not listed on IDEAS
    8. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    9. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    10. Zhang, Dongyang & Kong, Qunxi, 2022. "Do energy policies bring about corporate overinvestment? Empirical evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 105(C).
    11. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
    12. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    13. Sancho, Ferran, 2010. "Double dividend effectiveness of energy tax policies and the elasticity of substitution: A CGE appraisal," Energy Policy, Elsevier, vol. 38(6), pages 2927-2933, June.
    14. Tang, Chengcai & Zhong, Linsheng & Ng, Pin, 2017. "Factors that Influence the Tourism Industry's Carbon Emissions: a Tourism Area Life Cycle Model Perspective," Energy Policy, Elsevier, vol. 109(C), pages 704-718.
    15. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    16. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    17. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    18. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    19. Nicholas Odhiambo, 2014. "Energy Dependence in Developing Countries: Does the Level of Income Matter?," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 42(1), pages 65-77, March.
    20. Esso, Loesse Jacques, 2010. "Threshold cointegration and causality relationship between energy use and growth in seven African countries," Energy Economics, Elsevier, vol. 32(6), pages 1383-1391, November.
    21. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    22. Gao, Runyi & Chuai, Xiaowei & Ge, Jingfeng & Wen, Jiqun & Zhao, Rongqin & Zuo, Tianhui, 2022. "An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China," Land Use Policy, Elsevier, vol. 116(C).
    23. Peng, Cheng & Chen, Heng & Lin, Chaoran & Guo, Shuang & Yang, Zhi & Chen, Ke, 2021. "A framework for evaluating energy security in China: Empirical analysis of forecasting and assessment based on energy consumption," Energy, Elsevier, vol. 234(C).
    24. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    25. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    26. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    27. Ouedraogo, Nadia S., 2013. "Energy consumption and economic growth: Evidence from the economic community of West African States (ECOWAS)," Energy Economics, Elsevier, vol. 36(C), pages 637-647.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Haisheng & Zhao, Laijun & Dong, Wanhao, 2023. "How to achieve the goal of carbon peaking by the energy policy? A simulation using the DCGE model for the case of Shanghai, China," Energy, Elsevier, vol. 278(PA).
    2. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    3. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    4. Iyke, Bernard Njindan, 2015. "Electricity consumption and economic growth in Nigeria: A revisit of the energy-growth debate," Energy Economics, Elsevier, vol. 51(C), pages 166-176.
    5. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    6. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Economic Development Thresholds for a Green Economy in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 19/010, African Governance and Development Institute..
    7. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    8. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    9. Wesseh, Presley K. & Lin, Boqiang, 2016. "Can African countries efficiently build their economies on renewable energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 161-173.
    10. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.
    11. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    12. Hocaoglu, Fatih Onur & Karanfil, Fatih, 2011. "Examining the link between carbon dioxide emissions and the share of industry in GDP: Modeling and testing for the G-7 countries," Energy Policy, Elsevier, vol. 39(6), pages 3612-3620, June.
    13. Sheilla Nyasha & Yvonne Gwenhure & Nicholas M Odhiambo, 2018. "Energy consumption and economic growth in Ethiopia: A dynamic causal linkage," Energy & Environment, , vol. 29(8), pages 1393-1412, December.
    14. Asongu, Simplice & Odhiambo, Nicholas, 2020. "The role of Globalization in Modulating the Effect of Environmental Degradation on Inclusive Human Development," MPRA Paper 103143, University Library of Munich, Germany.
    15. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    16. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    17. Asane-Otoo, Emmanuel, 2015. "Carbon footprint and emission determinants in Africa," Energy, Elsevier, vol. 82(C), pages 426-435.
    18. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    19. Daberechi Chikezie Ekwueme & Taiwo Temitope Lasisi & Kayode Kolawole Eluwole, 2023. "Environmental sustainability in Asian countries: Understanding the criticality of economic growth, industrialization, tourism import, and energy use," Energy & Environment, , vol. 34(5), pages 1592-1618, August.
    20. Simplice A. Asongu & Joseph Nnanna, 2021. "Globalization, Governance and the Green Economy in Sub-Saharan Africa: Policy Thresholds," Working Papers 21/015, European Xtramile Centre of African Studies (EXCAS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:165-:d:1011942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.