Research on the mechanism of the effect of vortex on the hydraulic loss of pump as turbine units based on entropy production theory
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.122048
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
- Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
- Song, Xijie & Liu, Chao, 2021. "Experimental study of the floor-attached vortices in pump sump using V3V," Renewable Energy, Elsevier, vol. 164(C), pages 752-766.
- Song, Xijie & Liu, Chao, 2020. "Experimental investigation of floor-attached vortex effects on the pressure pulsation at the bottom of the axial flow pump sump," Renewable Energy, Elsevier, vol. 145(C), pages 2327-2336.
- Haisheng Hu & Wanhao Dong, 2022. "The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China’s Energy Planning Policy: Analysis Using a CGE Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
- Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
- Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
- Jin, Faye & Wang, Huanmao & Luo, Yongyao & Presas, Alexandre & Bi, Huili & Wang, Zhengwei & Lin, Kai & Lei, Xingchun & Yang, Xiaolong, 2023. "Visualization research of energy dissipation in a pump turbine unit during turbine mode's starting up," Renewable Energy, Elsevier, vol. 217(C).
- Atmaram Kayastha & Hari Prasad Neopane & Ole Gunnar Dahlhaug, 2025. "Experimental Approach to Evaluate Effectiveness of Vortex Generators on Francis Turbine Runner," Energies, MDPI, vol. 18(4), pages 1-20, February.
- Huo, Zhishuo & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Yang, Yuqi, 2025. "A synergistic model framework for identifying variable renewable energy integration capacity and deployment sites for hydro-wind-PV integrated energy bases," Energy, Elsevier, vol. 314(C).
- Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
- Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
- Yang Li & Feilong Hong & Xiaohui Ge & Xuesong Zhang & Bo Zhao & Feng Wu, 2023. "Optimal Capacity Configuration of Pumped-Storage Units Used to Retrofit Cascaded Hydropower Stations," Energies, MDPI, vol. 16(24), pages 1-22, December.
- Cheng, Long & Ming, Bo & Cheng, Qiuyu & Jiang, Jianhua & Zhang, Hao & Jurasz, Jakub & Liu, Pan & Li, Meicheng, 2024. "Revealing electricity conversion mechanism of a cascade energy storage system," Energy, Elsevier, vol. 304(C).
- Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.
- Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
- Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
- Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
- Zhou, Yanlai & Ning, Zhihao & Huang, Kangkang & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2025. "Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
- Chunhong Liu & Shisong Jiang & Hanfei Zhang & Ziyi Lu & Umberto Desideri, 2024. "China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential," Energies, MDPI, vol. 17(4), pages 1-18, February.
- Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
- Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
- Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
- Qiao, Yajing & Wang, Shaoping & Shi, Jian & Liu, Di & Tao, Mo, 2024. "Reliability model based on fault energy dissipation for mechatronic system," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
More about this item
Keywords
Pump as turbine; Vortex; Hydraulic loss; Entropy production; Model test; Vortex induced turbulent dissipation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.