IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp887-895.html
   My bibliography  Save this article

Influence of rotation on the modal characteristics of a bulb turbine unit rotor

Author

Listed:
  • Cao, Jingwei
  • Luo, Yongyao
  • Presas, Alexandre
  • Ahn, Soo-Hwang
  • Wang, Zhengwei
  • Huang, Xingxing
  • Liu, Yan

Abstract

Bulb turbine units are one of the most installed turbines in run-of river projects with relatively low head. In order to enlarge the useful life of these turbines and avoid fatigue problems and cracks, it is of paramount importance to understand and determine the most relevant parameters and their influence on the dynamic response of the structure. In this paper, the modal characteristics of a bulb turbine unit in operation is numerically investigated, considering the rotation effect. A FEM model including alternator, shaft, runner and fluid is developed and the boundary conditions are determined. Firstly, the modal characteristic of the runner under different blade opening are analyzed. Then the influence of the rotation on the modal characteristic of the shaft and runner is discussed. The numerical method is verified by comparing with experimental results of a rotating and submerged disk. The results show that the runner modes are mainly blade-modes,which can be grouped according to the blade number, one jellyfish mode and four local modes in each group. A modified Campbell diagram of the global modes and a transformation matrix of natural frequency between dry modes and wet modes are proposed. Results of this study helps to understand the most influencing parameters, such as the added mass effect of water combined with the rotation. The proposed modified Campbell diagram could be used for an accurate calculation of natural frequencies and avoid possible resonance problems in future designs of bulb turbine units.

Suggested Citation

  • Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:887-895
    DOI: 10.1016/j.renene.2022.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2018. "Cavitation behavior study in the pump mode of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 125(C), pages 655-667.
    2. Xin Liu & Yongyao Luo & Alexandre Presas & Zhengwei Wang & Lingjiu Zhou, 2018. "Cavitation Effects on the Structural Resonance of Hydraulic Turbines: Failure Analysis in a Real Francis Turbine Runner," Energies, MDPI, vol. 11(9), pages 1-16, September.
    3. Song, Xijie & Liu, Chao, 2020. "Experimental investigation of floor-attached vortex effects on the pressure pulsation at the bottom of the axial flow pump sump," Renewable Energy, Elsevier, vol. 145(C), pages 2327-2336.
    4. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    5. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Numerical prediction on the effect of free surface vortex on intake flow characteristics for tidal power station," Renewable Energy, Elsevier, vol. 101(C), pages 617-628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyang Li & Jingwei Cao & Jianling Zhuang & Tongmao Wu & Hongyong Zheng & Yunfeng Wang & Wenqiang Zheng & Guoqing Lin & Zhengwei Wang, 2022. "Effect of Operating Head on Dynamic Behavior of a Pump–Turbine Runner in Turbine Mode," Energies, MDPI, vol. 15(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xianbei & Yang, Wei & Li, Yaojun & Qiu, Baoyun & Guo, Qiang & Zhuqing, Liu, 2019. "Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 46-69.
    2. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Wang, Zhengwei & Luo, Yongyao & Luo, Kun, 2020. "Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra," Renewable Energy, Elsevier, vol. 157(C), pages 9-23.
    3. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    4. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    5. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    6. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    7. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    8. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    9. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    11. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    12. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    13. Shi, Guangtai & Wang, Shan & Xiao, Yexiang & Liu, Zongku & Li, Helin & Liu, Xiaobing, 2021. "Effect of cavitation on energy conversion characteristics of a multiphase pump," Renewable Energy, Elsevier, vol. 177(C), pages 1308-1320.
    14. Yaping Zhao & Jianjun Feng & Zhihua Li & Mengfan Dang & Xingqi Luo, 2022. "Analysis of Pressure Fluctuation of Tubular Turbine under Different Application Heads," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    15. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
    16. Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
    17. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    18. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    19. Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
    20. Virgel M. Arocena & Binoe E. Abuan & Joseph Gerard T. Reyes & Paul L. Rodgers & Louis Angelo M. Danao, 2020. "Reduction of Entrained Vortices in Submersible Pump Suction Lines Using Numerical Simulations," Energies, MDPI, vol. 13(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:887-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.