IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4004-d827349.html
   My bibliography  Save this article

Effect of Operating Head on Dynamic Behavior of a Pump–Turbine Runner in Turbine Mode

Author

Listed:
  • Xiangyang Li

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Jingwei Cao

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Jianling Zhuang

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Tongmao Wu

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Hongyong Zheng

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Yunfeng Wang

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Wenqiang Zheng

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Guoqing Lin

    (Fujian Xianyou Pumped Storage Co., Ltd., Putian 351267, China)

  • Zhengwei Wang

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Pumped storage units improve the stability of the power grid, and the key component is the pump–turbine. A pump–turbine usually needs to start and shutdown frequently, and the operating head varies greatly due to changes in the water level of the reservoir, which makes the dynamic behavior of a pump–turbine runner extremely complex. This paper investigates the effects of operating head on the dynamic response characteristics of a pump–turbine runner in turbine mode. The flow characteristics of the pump–turbine at maximum head, rated head and minimum head are analyzed, and the dynamic response characteristic of the pump–turbine runner are numerically studied. The results show that operating head can affect the pressure pulsation and dynamic stress characteristics of the pump–turbine runner, but it has little effect on the frequency spectra. The conclusions of this paper intend to improve understanding of the effects of the operating head on the dynamic behavior of the pump–turbine runner, therefore providing a theoretical reference for safe and stable operation of the pump–turbine unit.

Suggested Citation

  • Xiangyang Li & Jingwei Cao & Jianling Zhuang & Tongmao Wu & Hongyong Zheng & Yunfeng Wang & Wenqiang Zheng & Guoqing Lin & Zhengwei Wang, 2022. "Effect of Operating Head on Dynamic Behavior of a Pump–Turbine Runner in Turbine Mode," Energies, MDPI, vol. 15(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4004-:d:827349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    2. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    3. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    4. Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
    5. Linghua Kong & Jingwei Cao & Xiangyang Li & Xulei Zhou & Haihong Hu & Tao Wang & Shuxin Gui & Wenfa Lai & Zhongfeng Zhu & Zhengwei Wang & Yan Liu, 2022. "Numerical Analysis on the Hydraulic Thrust and Dynamic Response Characteristics of a Turbine Pump," Energies, MDPI, vol. 15(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    2. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    3. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    4. Zhang, Jiaye & Chen, Chongming & Zhou, Ao & Rahman, Zia ur & Wang, Xuebin & Stojiljković, Dragoslava & Manić, Nebojsa & Vujanović, Milan & Tan, Houzhang, 2022. "Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere," Energy, Elsevier, vol. 238(PB).
    5. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    6. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    7. Razzaq, Asif & Sharif, Arshian & An, Hui & Aloui, Chaker, 2022. "Testing the directional predictability between carbon trading and sectoral stocks in China: New insights using cross-quantilogram and rolling window causality approaches," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Krzemianowski, Zbigniew & Steller, Janusz, 2021. "High specific speed Francis turbine for small hydro purposes - Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience," Renewable Energy, Elsevier, vol. 169(C), pages 1210-1228.
    9. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.
    10. Qin, Meng & Zhang, Xiaojing & Li, Yameng & Badarcea, Roxana Maria, 2023. "Blockchain market and green finance: The enablers of carbon neutrality in China," Energy Economics, Elsevier, vol. 118(C).
    11. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    12. Yuhan Wang & Zenghui Huo & Dongpo Li & Mei Zhang, 2022. "Evaluation of Common Prosperity Level and Regional Difference Analysis along the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    13. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    14. Jia, Zhijie & Wen, Shiyan & Liu, Yu, 2022. "China's urban-rural inequality caused by carbon neutrality: A perspective from carbon footprint and decomposed social welfare," Energy Economics, Elsevier, vol. 113(C).
    15. Zhiyan Yang & Zirui Liu & Yongguang Cheng & Xiaoxi Zhang & Ke Liu & Linsheng Xia, 2020. "Differences of Flow Patterns and Pressure Pulsations in Four Prototype Pump-Turbines during Runaway Transient Processes," Energies, MDPI, vol. 13(20), pages 1-20, October.
    16. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    17. Qiqi Wanyan & Hongcheng Xu & Lina Song & Weiyao Zhu & Gen Pei & Jiayi Fan & Kai Zhao & Junlan Liu & Yubao Gao, 2023. "A Novel Performance Evaluation Method for Gas Reservoir-Type Underground Natural Gas Storage," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Qi Jiang & Zhigang Yin, 2023. "The Optimal Path for China to Achieve the “Dual Carbon” Target from the Perspective of Energy Structure Optimization," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    19. Licandeo, Francisca & Flores, Francisco & Feijoo, Felipe, 2023. "Assessing the impacts of economy-wide emissions policies in the water, energy, and land systems considering water scarcity scenarios," Applied Energy, Elsevier, vol. 342(C).
    20. Shi, Lijian & Yuan, Yao & Jiao, Haifeng & Tang, Fangping & Cheng, Li & Yang, Fan & Jin, Yan & Zhu, Jun, 2021. "Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump," Renewable Energy, Elsevier, vol. 163(C), pages 987-1000.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4004-:d:827349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.