IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v341y2019icp46-69.html
   My bibliography  Save this article

Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery

Author

Listed:
  • Huang, Xianbei
  • Yang, Wei
  • Li, Yaojun
  • Qiu, Baoyun
  • Guo, Qiang
  • Zhuqing, Liu

Abstract

The complex geometry of rotating machines makes the flows strongly affected by rotation and curvature, which are challenging for turbulence modeling. During the development of CFD, large amount of turbulence models appeared and hence make the user hard to decide which one to choose. The present paper presents a coherent review of the various approaches proposed in the recent literatures on this topic. First, the influence of the rotation and curvature is reviewed and concluded. Then, the basic concepts of RANS and LES are introduced to facilitate the description of the models and each method is classified into several types. A variety of models are then described and assessed either by the results in the literatures or by own results, with special concentration on the application to rotating machines. Finally, a brief introduction to the hybrid RANS/LES is made and assessed, together with the recommendation for the selection of the models. The aim of the review is to provide information on the advantages and limitations of related models and make it easier for the user to choose an appropriate model.

Suggested Citation

  • Huang, Xianbei & Yang, Wei & Li, Yaojun & Qiu, Baoyun & Guo, Qiang & Zhuqing, Liu, 2019. "Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 46-69.
  • Handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:46-69
    DOI: 10.1016/j.amc.2018.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318307410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    2. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Numerical prediction on the effect of free surface vortex on intake flow characteristics for tidal power station," Renewable Energy, Elsevier, vol. 101(C), pages 617-628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    2. Wang, Chaoyue & Wang, Benhong & Wang, Fujun & Wang, Hao & Hong, Yiping & Wu, Jie & Li, Dianji & Shao, Chunbing, 2024. "On the scale effect of energy conversion in large-scale bulb tubular pump: Characteristics, mechanisms and applications," Energy, Elsevier, vol. 292(C).
    3. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Wang, Zhengwei & Luo, Yongyao & Luo, Kun, 2020. "Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra," Renewable Energy, Elsevier, vol. 157(C), pages 9-23.
    2. Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
    3. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    4. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    5. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    6. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    7. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    8. Morabito, Alessandro & Vagnoni, Elena, 2024. "CFD-based analysis of pumped storage power plants implementing hydraulic short circuit operations," Applied Energy, Elsevier, vol. 369(C).
    9. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    10. Yaping Zhao & Jianjun Feng & Zhihua Li & Mengfan Dang & Xingqi Luo, 2022. "Analysis of Pressure Fluctuation of Tubular Turbine under Different Application Heads," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    11. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    12. Virgel M. Arocena & Binoe E. Abuan & Joseph Gerard T. Reyes & Paul L. Rodgers & Louis Angelo M. Danao, 2020. "Reduction of Entrained Vortices in Submersible Pump Suction Lines Using Numerical Simulations," Energies, MDPI, vol. 13(22), pages 1-20, November.
    13. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.
    14. Kim, J.W. & Woo, S.-B., 2023. "A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant," Renewable Energy, Elsevier, vol. 219(P1).
    15. Liu, Pengfei & Bose, Neil & Chen, Keqiang & Xu, Yiyi, 2018. "Development and optimization of dual-mode propellers for renewable energy," Renewable Energy, Elsevier, vol. 119(C), pages 566-576.
    16. Arzaghi, Ehsan & Abaei, Mohammad Mahdi & Abbassi, Rouzbeh & O'Reilly, Malgorzata & Garaniya, Vikram & Penesis, Irene, 2020. "A Markovian approach to power generation capacity assessment of floating wave energy converters," Renewable Energy, Elsevier, vol. 146(C), pages 2736-2743.
    17. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
    18. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    19. Xu, Beibei & Jun, Hong-Bae & Chen, Diyi & Li, Huanhuan & Zhang, Jingjing & Cavalcante Blanco, Claudio Jose & Shen, Haijun, 2019. "Stability analysis of a hydro-turbine governing system considering inner energy losses," Renewable Energy, Elsevier, vol. 134(C), pages 258-266.
    20. Li, Lin & Tan, Dapeng & Wang, Tong & Yin, Zichao & Fan, Xinghua & Wang, Ronghui, 2021. "Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:46-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.