IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125006603.html
   My bibliography  Save this article

Fluid deformation induced energy loss of pump-turbines based on the transport of mean kinetic energy

Author

Listed:
  • Kan, Kan
  • Liu, Kunting
  • Xu, Zhe
  • Li, Zhixiang
  • Rossi, Mosè
  • Chen, Huixiang

Abstract

In-depth research into the energy loss characteristics of pump-turbines is crucial for their proper design and optimization. This paper presents a study of the energy loss in pump-turbines to highlight the mechanisms of energy loss in these machines and reveal the energy conversion process. The analysis of the mean kinetic energy transport equation, based on the Reynolds-averaged flow, shows that energy losses within a pump-turbine are transformed into heat and turbulent kinetic energy. This transformation occurs through two mechanisms: viscous dissipation and the generation of turbulent kinetic energy by the mean flow. The turbulent kinetic energy generation term dominates the energy loss, accounting for 50 %–67 % of the total loss. There is a strong connection between the energy loss in the deformation of the runner and fluid element. The turbulent kinetic energy generation correlates to a large extent with the fluid shear stress and stretching deformation (ρP is between 0.81 and 0.98). This shows that turbulent kinetic energy is mainly generated by fluid shear and stretching. Shear deformation contributes more, caused by backflow and flow separation on the blade. Stretching deformation is affected by the flow and also affects the shear. In the runner inlet, the fluid elements are stretched 66 % in the z-direction and sheared 66 % in the xy plane due to backflow and impact. This shows that a fluid element in a level goes through a certain degree of shear deformation, the fluid element is subject to stretching deformation in the normal direction of that plane. The findings of this study provide theoretical support for performance enhancement and hydraulic optimization of pump-turbines and provide significant practical engineering value.

Suggested Citation

  • Kan, Kan & Liu, Kunting & Xu, Zhe & Li, Zhixiang & Rossi, Mosè & Chen, Huixiang, 2025. "Fluid deformation induced energy loss of pump-turbines based on the transport of mean kinetic energy," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125006603
    DOI: 10.1016/j.renene.2025.122998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125006603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.
    2. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    3. Guocheng Lu & Zhigang Zuo & Demin Liu & Shuhong Liu, 2019. "Energy Balance and Local Unsteady Loss Analysis of Flows in a Low Specific Speed Model Pump-Turbine in the Positive Slope Region on the Pump Performance Curve," Energies, MDPI, vol. 12(10), pages 1-22, May.
    4. Kan, Kan & Yang, Zixuan & Lyu, Pin & Zheng, Yuan & Shen, Lian, 2021. "Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method," Renewable Energy, Elsevier, vol. 168(C), pages 960-971.
    5. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    6. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    7. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).
    8. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    9. Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
    10. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    11. Song, Xijie & Wang, Zhengwei & Jin, Yan & Liu, Chao & Presas, Alexandre & Tang, Fangping & Lu, Yonggang, 2025. "Research on the mechanism of the effect of vortex on the hydraulic loss of pump as turbine units based on entropy production theory," Renewable Energy, Elsevier, vol. 239(C).
    12. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    13. Chen, Weisheng & Xiang, Qiujie & Li, Yaojun & Liu, Zhuqing, 2023. "On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhe & Zheng, Yuan & Kan, Kan & Pavesi, Giorgio & Rossi, Mosè & Xu, Lianchen & Yan, Xiaotong, 2025. "Vortex evolution and energy loss of an axial flow Pump-As-Turbine (PAT) with the influence of upstream waves," Energy, Elsevier, vol. 322(C).
    2. Jin, Faye & Luo, Yongyao & Wang, Zhengwei, 2024. "Research on the starting-up process of a prototype reversible pump turbine with misaligned guide vanes: An energy loss analysis," Energy, Elsevier, vol. 304(C).
    3. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    4. Lei, Shuaihao & Cheng, Li & Sheng, Weigao, 2025. "Study of energy dissipation mechanisms and pressure pulsation spectrums in a vertical axial flow pumping station on the ultra-low head condition based on multiple analysis methods," Energy, Elsevier, vol. 320(C).
    5. Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
    6. Yu, Shengping & Wang, Yuhu & Chen, Tairan & Li, Mingke & Zhang, Xiaoping & Huang, Biao & Xu, Jin & Wang, Guoyu, 2025. "An inclined groove and its optimization design method for improving the energy performance at the saddle zone of axial flow pumps," Energy, Elsevier, vol. 328(C).
    7. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    8. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    9. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    10. Sun, Longyue & Pan, Qiang & Zhang, Desheng & Zhao, Ruijie & Esch, B.P.M.(Bart) van, 2022. "Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods," Energy, Elsevier, vol. 258(C).
    11. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    12. Ye, Weixiang & Liu, Hao & Wang, Hong & Luo, Xianwu, 2025. "Towards the pumped-hydro energy storage: Improvement on the flow instability and cavitation performance with application-oriented forward skew angle of impeller blades," Energy, Elsevier, vol. 316(C).
    13. Song, Xijie & Luo, Yongyao & Wang, Zhengwei, 2024. "Mechanism of the influence of sand on the energy dissipation inside the hydraulic turbine under sediment erosion condition," Energy, Elsevier, vol. 294(C).
    14. Lei, Shuaihao & Cheng, Li, 2025. "Investigation of transient effects and energy losses for an axial flow pump as turbine in pump mode's start-up," Energy, Elsevier, vol. 326(C).
    15. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    16. Inhestern, Lukas Benjamin & Peitsch, Dieter & Paniagua, Guillermo, 2024. "Flow irreversibility and heat transfer effects on turbine efficiency," Applied Energy, Elsevier, vol. 353(PA).
    17. Wan, Dehai & Wang, Jianjun, 2025. "Numerical study of energy losses in the energy conversion process of a cold model flue gas turbine based on entropy production method," Energy, Elsevier, vol. 314(C).
    18. Zhang, Xiaowen & Tang, Fangping & Pavesi, Giorgio & Hu, Chongyang & Song, Xijie, 2024. "Influence of gate cutoff effect on flow mode conversion and energy dissipation during power-off of prototype tubular pump system," Energy, Elsevier, vol. 308(C).
    19. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    20. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125006603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.