IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223013415.html
   My bibliography  Save this article

How to achieve the goal of carbon peaking by the energy policy? A simulation using the DCGE model for the case of Shanghai, China

Author

Listed:
  • Hu, Haisheng
  • Zhao, Laijun
  • Dong, Wanhao

Abstract

The main issue of this study is what kind of energy policy should Shanghai adopt to achieve the goal of carbon peaking in 2025, especially the policy different from that of the whole country. This study applies the dynamic computable general equilibrium model to simulate the impact of energy policy on energy consumption structure, energy use, carbon emissions, and the macroeconomy for the case of Shanghai, a city in east China with a large oil consumption share. By comparing the economic and environmental effects of various energy policies, suggestions are provided for Shanghai to choose a better energy policy. The simulation results indicate that limiting coal consumption and developing nonfossil energy policies, which is the policy listed in Shanghai's 14th five-year plan, could not achieve carbon peaking by 2025. A combined policy could achieve the goal of carbon peaking. In addition, the combined policy helps to optimize the effect of macroeconomy. Limiting oil consumption is the key to achieve carbon peaking in Shanghai. Additionally, the simulation of oil supply policy is helpful for policy making, especially for the regions with a similar energy structure. This study finding is a contribution to the existing literature.

Suggested Citation

  • Hu, Haisheng & Zhao, Laijun & Dong, Wanhao, 2023. "How to achieve the goal of carbon peaking by the energy policy? A simulation using the DCGE model for the case of Shanghai, China," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013415
    DOI: 10.1016/j.energy.2023.127947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Qichuan & Ma, Xuejiao, 2021. "Spillovers of environmental regulation on carbon emissions network," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    3. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    4. Grottera, Carolina & Naspolini, Giovanna Ferrazzo & La Rovere, Emilio Lèbre & Schmitz Gonçalves, Daniel Neves & Nogueira, Tainan de Farias & Hebeda, Otto & Dubeux, Carolina Burle Schmidt & Goes, Georg, 2022. "Energy policy implications of carbon pricing scenarios for the Brazilian NDC implementation," Energy Policy, Elsevier, vol. 160(C).
    5. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    6. Zhang, Dongyang & Kong, Qunxi, 2022. "Do energy policies bring about corporate overinvestment? Empirical evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 105(C).
    7. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    8. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    9. Ding, Suiting & Zhang, Ming & Song, Yan, 2019. "Exploring China's carbon emissions peak for different carbon tax scenarios," Energy Policy, Elsevier, vol. 129(C), pages 1245-1252.
    10. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    11. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    12. Sancho, Ferran, 2010. "Double dividend effectiveness of energy tax policies and the elasticity of substitution: A CGE appraisal," Energy Policy, Elsevier, vol. 38(6), pages 2927-2933, June.
    13. Zhao, Xiaomeng & Liu, Chuanjiang & Sun, Chuanwang & Yang, Mian, 2020. "Does stringent environmental regulation lead to a carbon haven effect? Evidence from carbon-intensive industries in China," Energy Economics, Elsevier, vol. 86(C).
    14. Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
    15. Sokołowski, Maciej M. & Heffron, Raphael J., 2022. "Defining and conceptualising energy policy failure: The when, where, why, and how," Energy Policy, Elsevier, vol. 161(C).
    16. Tian, Xu & Dai, Hancheng & Geng, Yong & Huang, Zhen & Masui, Toshihiko & Fujita, Tsuyoshi, 2017. "The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai," Applied Energy, Elsevier, vol. 197(C), pages 270-278.
    17. Yuan, Yongna & Duan, Hongbo & Tsvetanov, Tsvetan G., 2020. "Synergizing China's energy and carbon mitigation goals: General equilibrium modeling and policy assessment," Energy Economics, Elsevier, vol. 89(C).
    18. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    19. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    20. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    21. Kevin J. Stiroh & Dale W. Jorgenson, 2000. "U.S. Economic Growth at the Industry Level," American Economic Review, American Economic Association, vol. 90(2), pages 161-167, May.
    22. Pradhan, Basanta K. & Ghosh, Joydeep, 2022. "A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India's green energy transition via furthering its renewable capacity," Energy Economics, Elsevier, vol. 106(C).
    23. Zhou, Qianling & Cui, Xiaoyong & Ni, Hongfu & Gong, Liutang, 2022. "The impact of environmental regulation policy on firms' energy-saving behavior: A quasi-natural experiment based on China's low-carbon pilot city policy," Resources Policy, Elsevier, vol. 76(C).
    24. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.
    25. García-Muros, Xaquín & Morris, Jennifer & Paltsev, Sergey, 2022. "Toward a just energy transition: A distributional analysis of low-carbon policies in the USA," Energy Economics, Elsevier, vol. 105(C).
    26. Jiang, Ping & Yang, Hufang & Li, Hongmin & Wang, Ying, 2021. "A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity," Energy, Elsevier, vol. 219(C).
    27. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    28. Yang, Zhenbing & Shao, Shuai & Yang, Lili, 2021. "Unintended consequences of carbon regulation on the performance of SOEs in China: The role of technical efficiency," Energy Economics, Elsevier, vol. 94(C).
    29. Xie, Li & Zhou, Zhichao & Hui, Shimin, 2022. "Does environmental regulation improve the structure of power generation technology? Evidence from China's pilot policy on the carbon emissions trading market(CETM)," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    30. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    31. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shenhai Huang & Chao Du & Xian Jin & Daini Zhang & Shiyan Wen & Zhijie Jia, 2023. "The Impact of Carbon Emission Trading on Renewable Energy: A Comparative Analysis Based on the CGE Model," Sustainability, MDPI, vol. 15(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haisheng Hu & Wanhao Dong, 2022. "The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China’s Energy Planning Policy: Analysis Using a CGE Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    2. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    3. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).
    4. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    5. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    6. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    7. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    8. Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
    9. Yan, Bin & Wang, Feng & Chen, Tian & Liu, Siyu & Bai, Xiaoxuan, 2023. "Digital finance, environmental regulation and emission reduction in manufacturing industry: New evidence incorporating dynamic spatial-temporal correlation and competition," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 750-763.
    10. Demetriou, E. & Hadjistassou, C., 2021. "Can China decarbonize its electricity sector?," Energy Policy, Elsevier, vol. 148(PB).
    11. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    12. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    13. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    14. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    16. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    18. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    19. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    20. Song, Xiang & Wang, Dingyu & Zhang, Xuantao & He, Yuan & Wang, Yong, 2022. "A comparison of the operation of China's carbon trading market and energy market and their spillover effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.