IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6374-d822734.html
   My bibliography  Save this article

The Heterogeneity of High-Quality Economic Development in China’s Mining Cities: A Meta Frontier Function

Author

Listed:
  • Wei Xu

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Jiahui Yi

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Jinhua Cheng

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

Abstract

The transformation of mining cities and the realization of high-quality economic development are complicated processes. The objective existence of abundant resource factor endowment in mining cities does not mean that resource allocation is in the optimal state and can play the greatest role. The optimal allocation of factors for the high-quality economic development of mining cities is more important than the resource factors. The input–output allocation efficiency of high-quality economic development under the common frontier and group frontier of 99 mining cities in China from 2006 to 2019 is calculated by using the data envelopment analysis method and common frontier model, and the pure technical efficiency and scale efficiency are decomposed. The results show that (1) the comprehensive technical efficiency values under both common frontiers and group frontiers show that the factor allocation efficiency in the process of high-quality economic development of different mining cities shows obvious heterogeneity. (2) The growth of the input–output allocation efficiency of the high-quality economic development of mining cities has significant spatial convergence characteristics, but the convergence speed is different. (3) The high-quality development path of the mining city’s economy should not only focus on comprehensively improving the ability of resource element input and output allocation but also improve the group environment.

Suggested Citation

  • Wei Xu & Jiahui Yi & Jinhua Cheng, 2022. "The Heterogeneity of High-Quality Economic Development in China’s Mining Cities: A Meta Frontier Function," IJERPH, MDPI, vol. 19(11), pages 1-23, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6374-:d:822734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao Hu & Tai-Hua Yan & Feng-Wen Chen, 2020. "Energy and Environment Performance of Resource-Based Cities in China: A Non-Parametric Approach for Estimating Hyperbolic Distance Function," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    2. Chiu, Yung-ho & Huang, Kuei-Ying & Chang, Tzu-Han & Lin, Tai-Yu, 2021. "Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences," Resources Policy, Elsevier, vol. 73(C).
    3. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    4. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    5. Baumol, William J, 1986. "Productivity Growth, Convergence, and Welfare: What the Long-run Data Show," American Economic Review, American Economic Association, vol. 76(5), pages 1072-1085, December.
    6. Liu, W.B. & Zhang, D.Q. & Meng, W. & Li, X.X. & Xu, F., 2011. "A study of DEA models without explicit inputs," Omega, Elsevier, vol. 39(5), pages 472-480, October.
    7. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    8. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    9. Yu, Yantuan & Huang, Jianhuan & Zhang, Ning, 2019. "Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective," Ecological Modelling, Elsevier, vol. 402(C), pages 1-17.
    10. Junfang Yuan & Zhengfu Bian & Qingwu Yan & Yuanqing Pan, 2019. "Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    11. Hongli Zhang & Lei Shen & Shuai Zhong & Ayman Elshkaki, 2020. "Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    2. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    3. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    4. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    5. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    6. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    7. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    8. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    9. Wang, Miao & Feng, Chao, 2023. "Measuring capacity utilization under the constraints of energy consumption and CO2 emissions using meta-frontier DEA: A case of China's non-ferrous metal industries," Resources Policy, Elsevier, vol. 80(C).
    10. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
    11. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    12. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    13. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    14. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    15. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    16. Kounetas, Kostas & Zervopoulos, Panagiotis, 2017. "Annex I and non-Annex I countries’productive performance revisited using a generalized directional distance function under a metafrontier framework: Is there any convergence-divergence pattern for tec," MPRA Paper 80904, University Library of Munich, Germany.
    17. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    18. Yongrok Choi & Yunning Ma & Yu Zhao & Hyoungsuk Lee, 2023. "Inequality in Fossil Fuel Power Plants in China: A Perspective of Efficiency and Abatement Cost," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    19. Mohsen Afsharian, 2020. "A metafrontier-based yardstick competition mechanism for incentivising units in centrally managed multi-group organisations," Annals of Operations Research, Springer, vol. 288(2), pages 681-700, May.
    20. Sahoo, Biresh K. & Singh, Ramadhar & Mishra, Bineet & Sankaran, Krithiga, 2017. "Research productivity in management schools of India during 1968-2015: A directional benefit-of-doubt model analysis," Omega, Elsevier, vol. 66(PA), pages 118-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6374-:d:822734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.