IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2019i1p89-d300547.html
   My bibliography  Save this article

The Evaluation Method of Low-Carbon Scenic Spots by Combining IBWM with B-DST and VIKOR in Fuzzy Environment

Author

Listed:
  • Aijun Liu

    (Department of Management Engineering, School of Economics & Management, Xidian University, Xi’an 710071, China)

  • Taoning Liu

    (Department of Management Engineering, School of Economics & Management, Xidian University, Xi’an 710071, China)

  • Xiaohui Ji

    (Department of Management Engineering, School of Economics & Management, Xidian University, Xi’an 710071, China)

  • Hui Lu

    (Tianhua College, Shanghai Normal University, Shanghai 201815, China)

  • Feng Li

    (School of Information, Beijing Wuzi University, Beijing 101149, China)

Abstract

With the concept of sustainability gaining popularity, low-carbon tourism has been widely considered. In this paper, a multicriteria group decision making (MCGDM) process based on an uncertain environment is proposed to study the evaluation problem of low-carbon scenic spots (LSSs). In order to minimize the influence of subjective and objective factors, the traditional Vlse Kriterjumska Optimizacija I Kompromisno Resenje (VIKOR) method is expanded, using the improved best and worst method (IBWM) and Bayes approximation method, based on Dempster-Shafer Theory (B-DST). First, in order to make the evaluation process more professional, a number of evaluation criteria are established as effective systems, followed by the use of triangular intuitionistic fuzzy numbers (TIFNs) to evaluate alternatives of LSSs. Next, according to the evaluation results, the weights of the criteria are determined by the IBWM method, and the weights of the expert panels (Eps) are determined by B-DST. Finally, a weighted averaging algorithm of TIFN is used to integrate the above results to expand the traditional VIKOR and obtain the optimal LSS. The applicability of this method is proven by example calculation. The main conclusions are as follows: tourist facilities and the eco-environment are the two most important factors influencing the choice of LSSs. Meanwhile, the roles of management and participant attitudes in LSS evaluations cannot be ignored.

Suggested Citation

  • Aijun Liu & Taoning Liu & Xiaohui Ji & Hui Lu & Feng Li, 2019. "The Evaluation Method of Low-Carbon Scenic Spots by Combining IBWM with B-DST and VIKOR in Fuzzy Environment," IJERPH, MDPI, vol. 17(1), pages 1-30, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:89-:d:300547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard S.J. Tol, 2006. "The Impact Of A Carbon Tax On International Tourism," Working Papers FNU-120, Research unit Sustainability and Global Change, Hamburg University, revised Nov 2006.
    2. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    3. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    4. Awasthi, Anjali & Govindan, Kannan & Gold, Stefan, 2018. "Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach," International Journal of Production Economics, Elsevier, vol. 195(C), pages 106-117.
    5. Su, Jing & Ji, Danfeng & Lin, Mao & Chen, Yanqing & Sun, Yuanyuan & Huo, Shouliang & Zhu, Jianchao & Xi, Beidou, 2017. "Developing surface water quality standards in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 294-303.
    6. Aijun Liu & Qiuyun Zhu & Xiaohui Ji & Hui Lu & Sang-Bing Tsai, 2018. "Novel Method for Perceiving Key Requirements of Customer Collaboration Low-Carbon Product Design," IJERPH, MDPI, vol. 15(7), pages 1-32, July.
    7. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    8. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    9. Luo, Fen & Becken, Susanne & Zhong, Yongde, 2018. "Changing travel patterns in China and ‘carbon footprint’ implications for a domestic tourist destination," Tourism Management, Elsevier, vol. 65(C), pages 1-13.
    10. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    11. Bin Liu & Tao Li & Sang-Bing Tsai, 2017. "Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    12. Lin, Tzu-Ping, 2010. "Carbon dioxide emissions from transport in Taiwan's national parks," Tourism Management, Elsevier, vol. 31(2), pages 285-290.
    13. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morteza Yazdani & Dragan Pamucar & Prasenjit Chatterjee & Ali Ebadi Torkayesh, 2022. "“A multi-tier sustainable food supplier selection model under uncertainty”," Operations Management Research, Springer, vol. 15(1), pages 116-145, June.
    2. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    3. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    4. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    5. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.
    6. Dandan Liu & Dewei Yang & Anmin Huang, 2021. "LEAP-Based Greenhouse Gases Emissions Peak and Low Carbon Pathways in China’s Tourist Industry," IJERPH, MDPI, vol. 18(3), pages 1-15, January.
    7. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    8. Kai Wang & Zhe Wang & Jun Deng & Yuanyuan Feng & Quanfang Li, 2022. "Study on the Evaluation of Emergency Management Capacity of Resilient Communities by the AHP-TOPSIS Method," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    9. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    11. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    12. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    13. Chao Song & Jian-Qiang Wang & Jun-Bo Li, 2020. "New Framework for Quality Function Deployment Using Linguistic Z-Numbers," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    14. Chong Li & He Huang & Ya Luo, 2022. "An Integrated Two-Dimension Linguistic Intuitionistic Fuzzy Decision-Making Approach for Unmanned Aerial Vehicle Supplier Selection," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    15. Concetta Manuela La Fata & Toni Lupo & Tommaso Piazza, 2019. "Service quality benchmarking via a novel approach based on fuzzy ELECTRE III and IPA: an empirical case involving the Italian public healthcare context," Health Care Management Science, Springer, vol. 22(1), pages 106-120, March.
    16. Zhengmin Liu & Lin Li & Xiaolan Zhao & Linbin Sha & Di Wang & Xinya Wang & Peide Liu, 2020. "Selecting the Optimal Green Agricultural Products Supplier: A Novel Approach Based on GBWM and PROMETHEE II," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    17. Alexander Kuan Daiy & Kao-Yi Shen & Jim-Yuh Huang & Tom Meng-Yen Lin, 2021. "A Hybrid MCDM Model for Evaluating Open Banking Business Partners," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    18. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    19. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    20. Chao Bi & Jingjing Zeng, 2019. "Nonlinear and Spatial Effects of Tourism on Carbon Emissions in China: A Spatial Econometric Approach," IJERPH, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:89-:d:300547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.