IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i1p107-d61826.html
   My bibliography  Save this article

Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa

Author

Listed:
  • Tafadzwanashe Mabhaudhi

    (Department of Crop Science, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, Pietermaritzburg, South Africa)

  • Tendai Chibarabada

    (Department of Crop Science, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, Pietermaritzburg, South Africa)

  • Albert Modi

    (Department of Crop Science, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, Pietermaritzburg, South Africa)

Abstract

Whereas sub-Saharan Africa’s (SSA) water scarcity, food, nutrition and health challenges are well-documented, efforts to address them have often been disconnected. Given that the region continues to be affected by poverty and food and nutrition insecurity at national and household levels, there is a need for a paradigm shift in order to effectively deliver on the twin challenges of food and nutrition security under conditions of water scarcity. There is a need to link water use in agriculture to achieve food and nutrition security outcomes for improved human health and well-being. Currently, there are no explicit linkages between water, agriculture, nutrition and health owing to uncoordinated efforts between agricultural and nutrition scientists. There is also a need to develop and promote the use of metrics that capture aspects of water, agriculture, food and nutrition. This review identified nutritional water productivity as a suitable index for measuring the impact of a water-food-nutrition-health nexus. Socio-economic factors are also considered as they influence food choices in rural communities. An argument for the need to utilise the region’s agrobiodiversity for addressing dietary quality and diversity was established. It is concluded that a model for improving nutrition and health of poor rural communities based on the water-food-nutrition-health nexus is possible.

Suggested Citation

  • Tafadzwanashe Mabhaudhi & Tendai Chibarabada & Albert Modi, 2016. "Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa," IJERPH, MDPI, vol. 13(1), pages 1-19, January.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:1:p:107-:d:61826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/1/107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/1/107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    3. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Food security in a world of natural resource scarcity: The role of agricultural technologies," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-847-7.
    4. Nicol, Alan & Langan, Simon & Victor, Michael & Gonsalves, J., 2015. "Water-smart agriculture in East Africa," IWMI Books, Reports H046950, International Water Management Institute.
    5. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    6. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    7. Nin-Pratt, Alejandro & Johnson, Michael & Magalhaes, Eduardo & You, Liangzhi & Diao, Xinshen & Chamberlin, Jordan, 2011. "Yield gaps and potential agricultural growth in West and Central Africa," Research reports alejandronin-pratt, International Food Policy Research Institute (IFPRI).
    8. Pauline Chivenge & Tafadzwanashe Mabhaudhi & Albert T. Modi & Paramu Mafongoya, 2015. "The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa," IJERPH, MDPI, vol. 12(6), pages 1-27, May.
    9. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    10. Soppe, R. W. O. & Ayars, J. E., 2003. "Characterizing ground water use by safflower using weighing lysimeters," Agricultural Water Management, Elsevier, vol. 60(1), pages 59-71, April.
    11. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    12. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    13. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    14. Behrman, Jere R., 1993. "The economic rationale for investing in nutrition in developing countries," World Development, Elsevier, vol. 21(11), pages 1749-1771, November.
    15. Renault, D. & Wallender, W. W., 2000. "Nutritional water productivity and diets," Agricultural Water Management, Elsevier, vol. 45(3), pages 275-296, August.
    16. Francesco Burchi & Jessica Fanzo & Emile Frison, 2011. "The Role of Food and Nutrition System Approaches in Tackling Hidden Hunger," IJERPH, MDPI, vol. 8(2), pages 1-16, January.
    17. Li, Dongxiao & Liu, Huiling & Qiao, Yunzhou & Wang, Youning & Cai, Zhaoming & Dong, Baodi & Shi, Changhai & Liu, Yueyan & Li, Xia & Liu, Mengyu, 2013. "Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress," Agricultural Water Management, Elsevier, vol. 129(C), pages 105-112.
    18. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    19. Perry, Chris & Steduto, Pasquale & Allen, Richard. G. & Burt, Charles M., 2009. "Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities," Agricultural Water Management, Elsevier, vol. 96(11), pages 1517-1524, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurencia Govender & Kirthee Pillay & Muthulisi Siwela & Albert Modi & Tafadzwanashe Mabhaudhi, 2016. "Food and Nutrition Insecurity in Selected Rural Communities of KwaZulu-Natal, South Africa—Linking Human Nutrition and Agriculture," IJERPH, MDPI, vol. 14(1), pages 1-21, December.
    2. Tendai Polite Chibarabada & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2017. "Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment," IJERPH, MDPI, vol. 14(11), pages 1-17, October.
    3. Adrián Csordás & István Füzesi, 2023. "The Impact of Technophobia on Vertical Farms," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    4. Matilda Azong Cho & Abel Ramoelo & Lindiwe M. Sibanda, 2023. "Exploring the Integration of the Land, Water, and Energy Nexus in Sustainable Food Systems Research through a Socio-Economic Lens: A Systematic Literature Review," Sustainability, MDPI, vol. 15(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    2. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    3. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    4. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Nyathi, M.K. & Van Halsema, G.E. & Beletse, Y.G. & Annandale, J.G. & Struik, P.C., 2018. "Nutritional water productivity of selected leafy vegetables," Agricultural Water Management, Elsevier, vol. 209(C), pages 111-122.
    6. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    7. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    8. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    9. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    10. Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
    11. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Hossain, Istiaque & Siwar, Chamhuri & Bin Mokhta, Mazlin & Dey, Madan Mohan & Jaafar, Abd. Hamid & Alam, Md. Mahmudul, 2019. "Water Productivity for Boro Rice Production: Study on floodplain Beels in Rajshahi, Bangladesh," OSF Preprints tm9na, Center for Open Science.
    13. Nyathi, M.K. & Mabhaudhi, T. & Van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2019. "Benchmarking nutritional water productivity of twenty vegetables - A review," Agricultural Water Management, Elsevier, vol. 221(C), pages 248-259.
    14. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    15. Tendai Polite Chibarabada & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2017. "Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment," IJERPH, MDPI, vol. 14(11), pages 1-17, October.
    16. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    17. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    18. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    19. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    20. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:1:p:107-:d:61826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.