IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v131y2014icp57-69.html
   My bibliography  Save this article

Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)

Author

Listed:
  • Karimov, Akmal Kh.
  • Šimůnek, Jirka
  • Hanjra, Munir A.
  • Avliyakulov, Mirzaolim
  • Forkutsa, Irina

Abstract

This paper analyzes the effect of the shallow water table on water use of the winter wheat (Triticum aestivum L.) that has replaced alfalfa (Medicago sativa) on the irrigated lands of the Fergana Valley, upstream of the Syrdarya River, in Central Asia. The effect of the shallow water table is investigated using HYDRUS-1D. Numerical simulations show that the contribution of the groundwater to evapotranspiration increases with a rising water table and decreases with increasing irrigation applications. Under irrigation conditions, an increase in the groundwater evapotranspiration is associated mainly with an increase in evaporation loss, causing a buildup of salinity in the crop root zone. Evaporation losses from fields planted with winter wheat after the harvest amount up to 45–47% of total evaporation thus affecting soil salinity and ecosystem health. Promoting the use of groundwater for irrigation in order to lower the groundwater table is suggested to achieve water savings from the change in the cropping pattern. Unlocking the potential of groundwater for irrigation in the Fergana Valley can also contribute toward managing soil salinity and improving the health and resilience of water, land and ecosystems of water, land and ecosystems (WLE).

Suggested Citation

  • Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
  • Handle: RePEc:eee:agiwat:v:131:y:2014:i:c:p:57-69
    DOI: 10.1016/j.agwat.2013.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Soppe, R. W. O. & Ayars, J. E., 2003. "Characterizing ground water use by safflower using weighing lysimeters," Agricultural Water Management, Elsevier, vol. 60(1), pages 59-71, April.
    3. Babajimopoulos, C. & Panoras, A. & Georgoussis, H. & Arampatzis, G. & Hatzigiannakis, E. & Papamichail, D., 2007. "Contribution to irrigation from shallow water table under field conditions," Agricultural Water Management, Elsevier, vol. 92(3), pages 205-210, September.
    4. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    5. Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
    6. Max Spoor, 1998. "The Aral Sea Basin Crisis: Transition and Environment in Former Soviet Central Asia," Development and Change, International Institute of Social Studies, vol. 29(3), pages 409-435, July.
    7. Zhang, L. & Dawes, W. R. & Slavich, P. G. & Meyer, W. S. & Thorburn, P. J. & Smith, D. J. & Walker, G. R., 1999. "Growth and ground water uptake responses of lucerne to changes in groundwater levels and salinity: lysimeter, isotope and modelling studies," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 265-282, February.
    8. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    9. Murgai, Rinku, 2001. "The Green Revolution and the productivity paradox: evidence from the Indian Punjab," Agricultural Economics, Blackwell, vol. 25(2-3), pages 199-209, September.
    10. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2003. "Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods," Agricultural Water Management, Elsevier, vol. 62(1), pages 37-66, August.
    11. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    12. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623, January.
    13. Karimov, A. & Molden, D. & Khamzina, T. & Platonov, A. & Ivanov, Yu., 2012. "A water accounting procedure to determine the water savings potential of the Fergana Valley," Agricultural Water Management, Elsevier, vol. 108(C), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tafadzwanashe Mabhaudhi & Tendai Chibarabada & Albert Modi, 2016. "Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa," IJERPH, MDPI, vol. 13(1), pages 1-19, January.
    2. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    4. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    5. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    6. Pacetti, Tommaso & Renzi, Niccolò & Lompi, Marco & Setti, Andrea & Spinelli, Daniele & Castelli, Giulio & Bresci, Elena & Caporali, Enrica, 2025. "Water footprint and water productivity analysis of an alternative organic mulching technology for irrigated agriculture," Agricultural Water Management, Elsevier, vol. 310(C).
    7. Jeanne PERRIER, 2019. "Les lois palestiniennes de l’eau : entre centralisation, décentralisation et mise en invisibilité," Working Paper f2757814-3bd9-4fc1-970d-2, Agence française de développement.
    8. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    9. Gou, Qiqi & Zhu, Yonghua & Horton, Robert & Lü, Haishen & Wang, Zhenlong & Su, Jianbin & Cui, Chenyun & Zhang, Haoqiang & Wang, Xiaoyi & Zheng, Jingyao & Yuan, Fei, 2020. "Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 240(C).
    10. Liu, Zhongyi & Chen, Hang & Huo, Zailin & Wang, Fengxin & Shock, Clinton C., 2016. "Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table," Agricultural Water Management, Elsevier, vol. 171(C), pages 131-141.
    11. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    12. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    13. Mirshadiev, Mirzokhid & Fleskens, Luuk & van Dam, Jos & Pulatov, Alim, 2018. "Scoping of promising land management and water use practices in the dry areas of Uzbekistan," Agricultural Water Management, Elsevier, vol. 207(C), pages 15-25.
    14. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    15. Saddam Hussain & Saba Malik & Muhammad Jehanzeb Masud Cheema & Muhammad Umair Ashraf & Muhammad Mazhar Iqbal & Sikandar Ali & Lubna Anjum & Muhammad Aslam & Hassan Afzal, 2020. "An Overview On Emerging Water Scarcity Challange In Pakistan, Its Consumption, Causes, Impacts And Remedial Measures," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 22-31, March.
    16. Kosari, Sina & Parsinejad, Masoud & Mokhtaran, Ali & Zebardast, Shahram, 2024. "Predicted feasibility and economic return of drainage water recycling in an arid region," Agricultural Water Management, Elsevier, vol. 302(C).
    17. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    18. Barnard, J.H. & van Rensburg, L.D. & Bennie, A.T.P. & du Preez, C.C., 2013. "Simulating water uptake of irrigated field crops from non-saline water table soils: Validation and application of the model SWAMP," Agricultural Water Management, Elsevier, vol. 126(C), pages 19-32.
    19. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    20. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:131:y:2014:i:c:p:57-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.