IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i7p316-d1705318.html
   My bibliography  Save this article

Parallel Agent-Based Framework for Analyzing Urban Agricultural Supply Chains

Author

Listed:
  • Manuel Ignacio Manríquez

    (Centre for Biotechnology and Engineering (CeBiB), Departamento de Ingeniería Informática, Universidad de Santiago, Santiago 15782, Chile)

  • Veronica Gil-Costa

    (CONICET, Facultad de Cs. Fisico Matematicas y Naturales, Universidad Nacional de San Luis, San Luis 5700, Argentina)

  • Mauricio Marin

    (Centre for Biotechnology and Engineering (CeBiB), Departamento de Ingeniería Informática, Universidad de Santiago, Santiago 15782, Chile)

Abstract

This work presents a parallel agent-based framework designed to analyze the dynamics of vegetable trade within a metropolitan area. The system integrates agent-based and discrete event techniques to capture the complex interactions among farmers, vendors, and consumers in urban agricultural supply chains. Decision-making processes are modeled in detail: farmers select crops based on market trends and environmental risks, while vendors and consumers adapt their purchasing behavior according to seasonality, prices, and availability. To efficiently handle the computational demands of large-scale scenarios, we adopt an optimistic approximate parallel execution strategy. Furthermore, we introduce a credit-based load balancing mechanism that mitigates the effects of heterogeneous communication patterns and improves scalability. This framework enables detailed analysis of food distribution systems in urban contexts, offering insights relevant to smart cities and digital agriculture initiatives.

Suggested Citation

  • Manuel Ignacio Manríquez & Veronica Gil-Costa & Mauricio Marin, 2025. "Parallel Agent-Based Framework for Analyzing Urban Agricultural Supply Chains," Future Internet, MDPI, vol. 17(7), pages 1-27, July.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:7:p:316-:d:1705318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/7/316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/7/316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    2. Lalendra Gurung & Janak Singh Rawal & Puspa RC & Ganesh Raj Joshi & Ashmita Mandal, 2024. "Vertical Farming In Urban Agriculture: Opportunities, Challenges, And Future Directions," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 6(2), pages 106-112, July.
    3. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    3. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    4. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Kellermann, Konrad & Balmann, Alfons, 2006. "How Smart Should Farms Be Modeled? Behavioral Foundation of Bidding Strategies in Agent-Based Land Market Models," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25446, International Association of Agricultural Economists.
    6. Pacillo, Grazia, 2016. "Market participation, innovation adoption and poverty in rural Ghana," Economics PhD Theses 0916, Department of Economics, University of Sussex Business School.
    7. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    8. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    9. Fuhong Zhang & Apurbo Sarkar & Hongyu Wang, 2021. "Does Internet and Information Technology Help Farmers to Maximize Profit: A Cross-Sectional Study of Apple Farmers in Shandong, China," Land, MDPI, vol. 10(4), pages 1-18, April.
    10. Happe, Kathrin & Balmann, Alfons, 2002. "Struktur-, Effizienz- und Einkommenswirkungen von Direktzahlungen," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 51(08), pages 1-13.
    11. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Dieter Pennerstorfer, 2022. "Farm exits and competition on the land market: Evidence from spatially explicit data," Economics working papers 2022-09, Department of Economics, Johannes Kepler University Linz, Austria.
    13. Anthony Patt & Bernd Siebenhüner, 2005. "Agent Based Modeling and Adaption to Climate Change," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 74(2), pages 310-320.
    14. Francesco Lamperti & Giovanni Dosi & Andrea Roventini, 2025. "A Complex System Perspective on the Economics of Climate Change, Boundless Risk, and Rapid Decarbonization," LEM Papers Series 2025/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Marcel Ausloos & Herbert Dawid & Ugo Merlone, 2015. "Spatial Interactions in Agent-Based Modeling," Dynamic Modeling and Econometrics in Economics and Finance, in: Pasquale Commendatore & Saime Kayam & Ingrid Kubin (ed.), Complexity and Geographical Economics, edition 127, pages 353-377, Springer.
    16. Veronique Beckers & Jeroen Beckers & Matthias Vanmaercke & Etienne Van Hecke & Anton Van Rompaey & Nicolas Dendoncker, 2018. "Modelling Farm Growth and Its Impact on Agricultural Land Use: A Country Scale Application of an Agent-Based Model," Land, MDPI, vol. 7(3), pages 1-19, September.
    17. Ruiyao Ying & Li Zhou & Wuyang Hu & Dan Pan, 2017. "Agricultural technical education and agrochemical use by rice farmers in China," Agribusiness, John Wiley & Sons, Ltd., vol. 33(4), pages 522-536, September.
    18. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    19. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    20. Müller-Hansen, Finn & Heitzig, Jobst & Donges, Jonathan & Cardoso, Manoel F. & Dalla-Nora, Eloi L. & Andrade, Pedro R. & Kurths, Jürgen & Thonicke, Kirsten, 2019. "Can intensification of cattle ranching reduce deforestation in the Amazon? Insights from an agent-based social-ecological model," SocArXiv x5q9j, Center for Open Science.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:7:p:316-:d:1705318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.