IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i7p208-d856735.html
   My bibliography  Save this article

Analytical Modeling and Empirical Analysis of Binary Options Strategies

Author

Listed:
  • Gurdal Ertek

    (College of Business and Economics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Aysha Al-Kaabi

    (College of Business and Economics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Aktham Issa Maghyereh

    (College of Business and Economics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

Abstract

This study analyzes binary option investment strategies by developing mathematical formalism and formulating analytical models. The binary outcome of binary options represents either an increase or a decrease in a parameter, typically an asset or derivative. The investor receives only partial returns if the prediction is correct but loses all the investment otherwise. Mainstream research on binary options aims to develop the best dynamic trading strategies. This study focuses on static tactical easy-to-implement strategies and investigates the performance of such strategies in relation to prediction accuracy, payout percentage, and investment strategy decisions.

Suggested Citation

  • Gurdal Ertek & Aysha Al-Kaabi & Aktham Issa Maghyereh, 2022. "Analytical Modeling and Empirical Analysis of Binary Options Strategies," Future Internet, MDPI, vol. 14(7), pages 1-23, July.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:7:p:208-:d:856735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/7/208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/7/208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    2. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    3. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
    4. Dimitrios Vezeris & Themistoklis Kyrgos & Christos Schinas, 2018. "Take Profit and Stop Loss Trading Strategies Comparison in Combination with an MACD Trading System," JRFM, MDPI, vol. 11(3), pages 1-23, September.
    5. Vasiliki A. Basdekidou, 2017. "Nonfarm Employment Report Trading With Binary Options & Temporal Functionalities," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 1(19), pages 1-1.
    6. Kiyoshi Suzuki, 2018. "Optimal pair-trading strategy over long/short/square positions—empirical study," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 97-119, January.
    7. Jean-François Bégin & Christian Dorion & Geneviève Gauthier, 2020. "Idiosyncratic Jump Risk Matters: Evidence from Equity Returns and Options," The Review of Financial Studies, Society for Financial Studies, vol. 33(1), pages 155-211.
    8. Gaetano Giunta & Francesco Benedetto, 2012. "Empirical Case Study of Binary Options Trading: An Interdisciplinary Application of Telecommunications Methodology to Financial Economics," International Journal of Interdisciplinary Telecommunications and Networking (IJITN), IGI Global, vol. 4(4), pages 54-63, October.
    9. Dmitriy Muravyev & Neil D Pearson & Stijn Van Nieuwerburgh, 2020. "Options Trading Costs Are Lower than You Think," The Review of Financial Studies, Society for Financial Studies, vol. 33(11), pages 4973-5014.
    10. Gürdal Ertek & Gül Tokdemir & Mete Sevinç & Murat Mustafa Tunç, 2017. "New knowledge in strategic management through visually mining semantic networks," Information Systems Frontiers, Springer, vol. 19(1), pages 165-185, February.
    11. Pankaj Pandey & Einar Snekkenes, 2016. "Using Financial Instruments to Transfer the Information Security Risks," Future Internet, MDPI, vol. 8(2), pages 1-62, May.
    12. Radosław Pietrzyk & Paweł Rokita, 2018. "Determination of the Own Funds Requirements for the Risk of Binary Options," Springer Proceedings in Business and Economics, in: Krzysztof Jajuga & Hermann Locarek-Junge & Lucjan T. Orlowski (ed.), Contemporary Trends and Challenges in Finance, pages 23-32, Springer.
    13. Tsai, Wei-Che, 2014. "Improved method for static replication under the CEV model," Finance Research Letters, Elsevier, vol. 11(3), pages 194-202.
    14. Masatoshi Miyake & Hiroshi Inoue & Jianming Shi & Tetsuya Shimokawa, 2014. "A Binary Option Pricing Based on Fuzziness," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(06), pages 1211-1227.
    15. Ahmet Duran & Michael Bommarito, 2011. "A profitable trading and risk management strategy despite transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 829-848.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    3. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Lili Sun & Xueyan Liu & Min Zhao & Bo Yang, 2021. "Interpretable Variational Graph Autoencoder with Noninformative Prior," Future Internet, MDPI, vol. 13(2), pages 1-15, February.
    5. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
    6. Zakaria Babutsidze & Maurizio Iacopetta, 2016. "Innovation, growth and financial markets," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 1-24, March.
    7. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    8. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    9. Fan, Zhenzhen & Londono, Juan M. & Xiao, Xiao, 2022. "Equity tail risk and currency risk premiums," Journal of Financial Economics, Elsevier, vol. 143(1), pages 484-503.
    10. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    11. Iryna Veryzhenko & Lise Arena & Etienne Harb & Nathalie Oriol, 2017. "Time to Slow Down for High‐Frequency Trading? Lessons from Artificial Markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 73-79, April.
    12. Nathalie Oriol & Iryna Veryzhenko, 2015. "Market Structure or Traders' Behaviour? An Assessment of Flash Crash Phenomena and their Regulation based on a Multi-agent Simulation," GREDEG Working Papers 2015-16, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    13. Borochin, Paul & Wu, Zekun & Zhao, Yanhui, 2021. "The effect of option-implied skewness on delta- and vega-hedged option returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    14. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    15. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    16. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    17. Jia‐Hau Guo & Lung‐Fu Chang, 2020. "Repeated Richardson extrapolation and static hedging of barrier options under the CEV model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 974-988, June.
    18. Vahidreza Yousefi & Siamak Haji Yakhchali & Jolanta Tamošaitienė, 2019. "Application of Duration Measure in Quantifying the Sensitivity of Project Returns to Changes in Discount Rates," Administrative Sciences, MDPI, vol. 9(1), pages 1-14, February.
    19. Bommarito, Michael J. & Duran, Ahmet, 2018. "Spectral analysis of time-dependent market-adjusted return correlation matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 273-282.
    20. Lee, Hangsuck & Ko, Bangwon & Lee, Minha, 2023. "The pricing and static hedging of multi-step double barrier options," Finance Research Letters, Elsevier, vol. 55(PA).
    21. Peter A. Forsyth & George Labahn, 2017. "$\epsilon$-Monotone Fourier Methods for Optimal Stochastic Control in Finance," Papers 1710.08450, arXiv.org, revised Apr 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:7:p:208-:d:856735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.