IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p195-d65707.html
   My bibliography  Save this article

On Scalability and Replicability of Smart Grid Projects—A Case Study

Author

Listed:
  • Lukas Sigrist

    (School of Engineering, ICAI of Universidad Pontificia Comillas, Alberto Aguilera 23, Madrid 28015, Spain)

  • Kristof May

    (Department of Electrical Engineering (ESAT) of KU Leuven, Kasteelpark Arenberg 10, Heverlee (PB2445) 3001, Belgium
    These authors contributed equally to this work.)

  • Andrei Morch

    (SINTEF Energy Research, Sem Saelands vei 11, Trondheim NO-7465, Norway
    These authors contributed equally to this work.)

  • Peter Verboven

    (VITO, Boeretang 200, 2400 Mol, Belgium
    These authors contributed equally to this work.)

  • Pieter Vingerhoets

    (Department of Electrical Engineering (ESAT) of KU Leuven, Kasteelpark Arenberg 10, Heverlee (PB2445) 3001, Belgium
    These authors contributed equally to this work.)

  • Luis Rouco

    (School of Engineering, ICAI of Universidad Pontificia Comillas, Alberto Aguilera 23, Madrid 28015, Spain)

Abstract

This paper studies the scalability and replicability of smart grid projects. Currently, most smart grid projects are still in the R&D or demonstration phases. The full roll-out of the tested solutions requires a suitable degree of scalability and replicability to prevent project demonstrators from remaining local experimental exercises. Scalability and replicability are the preliminary requisites to perform scaling-up and replication successfully; therefore, scalability and replicability allow for or at least reduce barriers for the growth and reuse of the results of project demonstrators. The paper proposes factors that influence and condition a project’s scalability and replicability. These factors involve technical, economic, regulatory and stakeholder acceptance related aspects, and they describe requirements for scalability and replicability. In order to assess and evaluate the identified scalability and replicability factors, data has been collected from European and national smart grid projects by means of a survey, reflecting the projects’ view and results. The evaluation of the factors allows quantifying the status quo of on-going projects with respect to the scalability and replicability, i.e. , they provide a feedback on to what extent projects take into account these factors and on whether the projects’ results and solutions are actually scalable and replicable.

Suggested Citation

  • Lukas Sigrist & Kristof May & Andrei Morch & Peter Verboven & Pieter Vingerhoets & Luis Rouco, 2016. "On Scalability and Replicability of Smart Grid Projects—A Case Study," Energies, MDPI, vol. 9(3), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:195-:d:65707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    2. Verbong, Geert P.J. & Beemsterboer, Sjouke & Sengers, Frans, 2013. "Smart grids or smart users? Involving users in developing a low carbon electricity economy," Energy Policy, Elsevier, vol. 52(C), pages 117-125.
    3. Luca Ardito & Giuseppe Procaccianti & Giuseppe Menga & Maurizio Morisio, 2013. "Smart Grid Technologies in Europe: An Overview," Energies, MDPI, vol. 6(1), pages 1-31, January.
    4. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    5. Di Santo, Katia Gregio & Kanashiro, Eduardo & Di Santo, Silvio Giuseppe & Saidel, Marco Antonio, 2015. "A review on smart grids and experiences in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1072-1082.
    6. Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodriguez-Calvo, Andrea & Cossent, Rafael & Frías, Pablo, 2018. "Scalability and replicability analysis of large-scale smart grid implementations: Approaches and proposals in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 1-15.
    2. Jan Kalbantner & Konstantinos Markantonakis & Darren Hurley-Smith & Raja Naeem Akram & Benjamin Semal, 2021. "P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time," Energies, MDPI, vol. 14(3), pages 1-25, January.
    3. Georgios Fotis & Christos Dikeakos & Elias Zafeiropoulos & Stylianos Pappas & Vasiliki Vita, 2022. "Scalability and Replicability for Smart Grid Innovation Projects and the Improvement of Renewable Energy Sources Exploitation: The FLEXITRANSTORE Case," Energies, MDPI, vol. 15(13), pages 1-32, June.
    4. Garfield Wayne Hunter & Daniele Vettorato & Gideon Sagoe, 2018. "Creating Smart Energy Cities for Sustainability through Project Implementation: A Case Study of Bolzano, Italy," Sustainability, MDPI, vol. 10(7), pages 1-29, June.
    5. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    6. Sergio Potenciano Menci & Ricardo J. Bessa & Barbara Herndler & Clemens Korner & Bharath-Varsh Rao & Fabian Leimgruber & André A. Madureira & David Rua & Fábio Coelho & João V. Silva & José R. Andrade, 2021. "Functional Scalability and Replicability Analysis for Smart Grid Functions: The InteGrid Project Approach," Energies, MDPI, vol. 14(18), pages 1-39, September.
    7. Sergio Potenciano Menci & Julien Le Baut & Javier Matanza Domingo & Gregorio López López & Rafael Cossent Arín & Manuel Pio Silva, 2020. "A Novel Methodology for the Scalability Analysis of ICT Systems for Smart Grids Based on SGAM: The InteGrid Project Approach," Energies, MDPI, vol. 13(15), pages 1-24, July.
    8. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    2. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    3. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    4. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    5. Yash Chawla & Anna Kowalska-Pyzalska & Burcu Oralhan, 2020. "Attitudes and Opinions of Social Media Users Towards Smart Meters’ Rollout in Turkey," Energies, MDPI, vol. 13(3), pages 1-27, February.
    6. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    7. Chawla, Yash & Kowalska-Pyzalska, Anna & Skowrońska-Szmer, Anna, 2020. "Perspectives of smart meters’ roll-out in India: An empirical analysis of consumers’ awareness and preferences," Energy Policy, Elsevier, vol. 146(C).
    8. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    9. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    10. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    11. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    12. Gonçalves, Luisa & Patrício, Lia, 2022. "From smart technologies to value cocreation and customer engagement with smart energy services," Energy Policy, Elsevier, vol. 170(C).
    13. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    14. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    15. Edouard Civel & Marc Baudry, 2018. "The Fate of Inventions. What can we learn from Bayesian learning in strategic options model of adoption ?," EconomiX Working Papers 2018-47, University of Paris Nanterre, EconomiX.
    16. Pedro Roncero-Sànchez & Enrique Acha, 2014. "Design of a Control Scheme for Distribution Static Synchronous Compensators with Power-Quality Improvement Capability," Energies, MDPI, vol. 7(4), pages 1-22, April.
    17. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    18. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    19. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    20. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:195-:d:65707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.