IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p7582-7592d53155.html
   My bibliography  Save this article

Performance Comparison between Steam Injected Gas Turbine and Combined Cycle during Frequency Drops

Author

Listed:
  • Saeed Bahrami

    (Department of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Vanak Square, Tehran 19991 43344, Iran)

  • Ali Ghaffari

    (Department of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Vanak Square, Tehran 19991 43344, Iran)

  • Magnus Genrup

    (Division of Thermal Power Engineering, Department of Energy Sciences, Lund University, Ole Römers väg 1, Lund SE-221 00, Sweden)

  • Marcus Thern

    (Division of Thermal Power Engineering, Department of Energy Sciences, Lund University, Ole Römers väg 1, Lund SE-221 00, Sweden)

Abstract

Single-shaft gas turbine and its cycles are sensitive to frequency drops and, therefore, sudden change loads or large frequency dips might affect their stability. This phenomenon is related to the reduction of the air mass flow passing through the machine during the frequency dips, which might lead to an interaction between governor and temperature control loop. In this paper, the performance of the combined cycle and steam-injected gas turbine are studied during frequency dips and transient maneuvers. For this purpose, two similar units are developed based on these cycles and their performances are studied in different scenarios. The simulation results show that the steam injected gas turbine has a better performance during frequency drops and it can handle relatively larger change loads.

Suggested Citation

  • Saeed Bahrami & Ali Ghaffari & Magnus Genrup & Marcus Thern, 2015. "Performance Comparison between Steam Injected Gas Turbine and Combined Cycle during Frequency Drops," Energies, MDPI, vol. 8(8), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7582-7592:d:53155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/7582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/7582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    2. Saeed Bahrami & Ali Ghaffari & Marcus Thern, 2013. "Improving the Transient Performance of the Gas Turbine by Steam Injection during Frequency Dips," Energies, MDPI, vol. 6(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    2. Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Mei, Xianzhi & Zhang, Shaobo & Zhang, Baohuai, 2017. "Performance simulation on NG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Applied Energy, Elsevier, vol. 196(C), pages 68-81.
    3. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    2. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.
    3. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    4. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    5. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    6. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    7. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    8. Peymani, Alireza & Sadeghi, Jafar & Shahraki, Farhad & Samimi, Abdolreza, 2022. "Connection a vapor jet refrigeration system to a steam injected gas turbine," Energy, Elsevier, vol. 261(PA).
    9. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    10. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    11. Chitsaz, Ata & Hosseinpour, Javad & Assadi, Mohsen, 2017. "Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; A comparative study," Energy, Elsevier, vol. 124(C), pages 613-624.
    12. Stathopoulos, Panagiotis & Rähse, Tim & Vinkeloe, Johann & Djordjevic, Neda, 2019. "Steam injected Humphrey cycle for gas turbines with pressure gain combustion," Energy, Elsevier, vol. 188(C).
    13. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2012. "Steam injection experiments in a microturbine – A thermodynamic performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 569-576.
    14. Saeed Bahrami & Ali Ghaffari & Marcus Thern, 2013. "Improving the Transient Performance of the Gas Turbine by Steam Injection during Frequency Dips," Energies, MDPI, vol. 6(10), pages 1-14, October.
    15. Maheshwari, Mayank & Singh, Onkar, 2019. "Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine," Energy, Elsevier, vol. 168(C), pages 1217-1236.
    16. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    17. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    18. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    19. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    20. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7582-7592:d:53155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.