IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2228-2245d34904.html
   My bibliography  Save this article

Taxing Strategies for Carbon Emissions: A Bilevel Optimization Approach

Author

Listed:
  • Wei Wei

    (State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Yile Liang

    (State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Feng Liu

    (State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Shengwei Mei

    (State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Fang Tian

    (Electric Power Research Institute of China, Beijing 100192, China)

Abstract

This paper presents a quantitative and computational method to determine the optimal tax rate among generating units. To strike a balance between the reduction of carbon emission and the profit of energy sectors, the proposed bilevel optimization model can be regarded as a Stackelberg game between the government agency and the generation companies. The upper-level, which represents the government agency, aims to limit total carbon emissions within a certain level by setting optimal tax rates among generators according to their emission performances. The lower-level, which represents decision behaviors of the grid operator, tries to minimize the total production cost under the tax rates set by the government. The bilevel optimization model is finally reformulated into a mixed integer linear program (MILP) which can be solved by off-the-shelf MILP solvers. Case studies on a 10-unit system as well as a provincial power grid in China demonstrate the validity of the proposed method and its capability in practical applications.

Suggested Citation

  • Wei Wei & Yile Liang & Feng Liu & Shengwei Mei & Fang Tian, 2014. "Taxing Strategies for Carbon Emissions: A Bilevel Optimization Approach," Energies, MDPI, vol. 7(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2228-2245:d:34904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnson, Kenneth C., 2010. "A decarbonization strategy for the electricity sector: New-source subsidies," Energy Policy, Elsevier, vol. 38(5), pages 2499-2507, May.
    2. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    3. Timothy Considine & Donald F. Larson, 2012. "Short Term Electric Production Technology Switching Under Carbon Cap and Trade," Energies, MDPI, vol. 5(10), pages 1-21, October.
    4. Janos Szlavik & Maria Csete, 2012. "Climate and Energy Policy in Hungary," Energies, MDPI, vol. 5(2), pages 1-24, February.
    5. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    6. Stavins, Robert N., 2003. "Experience with market-based environmental policy instruments," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 9, pages 355-435, Elsevier.
    7. Yun-Hsun Huang & Jung-Hua Wu, 2009. "Energy Policy in Taiwan: Historical Developments, Current Status and Potential Improvements," Energies, MDPI, vol. 2(3), pages 1-23, August.
    8. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    9. Maria Mansanet-Bataller & Ángel Pardo, 2008. "What You Should Know About Carbon Markets," Energies, MDPI, vol. 1(3), pages 1-34, December.
    10. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Daojun Chen & Qingwu Gong & Bichang Zou & Xiaohui Zhang & Jian Zhao, 2012. "A Low-Carbon Dispatch Model in a Wind Power Integrated System Considering Wind Speed Forecasting and Energy-Environmental Efficiency," Energies, MDPI, vol. 5(4), pages 1-26, April.
    12. Xian-Chun Tan & Yan-Yan Wang & Bai-He Gu & Ze-Kun Mu & Can Yang, 2011. "Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing," Energies, MDPI, vol. 4(9), pages 1-19, September.
    13. Nathaniel O. Keohane, 2009. "Cap and Trade, Rehabilitated: Using Tradable Permits to Control U.S. Greenhouse Gases," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(1), pages 42-62, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    2. Mackenzie, S.G. & Wallace, M. & Kyriazakis, I., 2017. "How effective can environmental taxes be in reducing the environmental impact of pig farming systems?," Agricultural Systems, Elsevier, vol. 152(C), pages 131-144.
    3. Shun Jia & Qinghe Yuan & Dawei Ren & Jingxiang Lv, 2017. "Energy Demand Modeling Methodology of Key State Transitions of Turning Processes," Energies, MDPI, vol. 10(4), pages 1-19, April.
    4. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    5. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    6. Zhang, Xiaodong & Patino-Echeverri, Dalia & Li, Mingquan & Wu, Libo, 2022. "A review of publicly available data sources for models to study renewables integration in China's power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    8. Ping Che & Yanyan Zhang & Jin Lang, 2019. "Emission-Intensity-Based Carbon Tax and Its Impact on Generation Self-Scheduling," Energies, MDPI, vol. 12(5), pages 1-17, February.
    9. Çalcı, Baturay & Leibowicz, Benjamin D. & Bard, Jonathan F. & Jayadev, Gopika G., 2024. "A bilevel approach to multi-period natural gas pricing and investment in gas-consuming infrastructure," Energy, Elsevier, vol. 303(C).
    10. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(4), pages 1-27, April.
    11. Wei Li & Zhijie Jia, 2017. "Carbon tax, emission trading, or the mixed policy: which is the most effective strategy for climate change mitigation in China?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 973-992, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Che & Yanyan Zhang & Jin Lang, 2019. "Emission-Intensity-Based Carbon Tax and Its Impact on Generation Self-Scheduling," Energies, MDPI, vol. 12(5), pages 1-17, February.
    2. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    3. N. Keohane & A. Petsonk & A. Hanafi, 2017. "Toward a club of carbon markets," Climatic Change, Springer, vol. 144(1), pages 81-95, September.
    4. Stavins, Robert N., 2019. "The Future of U.S. Carbon-Pricing Policy: Normative Assessment and Positive Prognosis," Working Paper Series rwp19-017, Harvard University, John F. Kennedy School of Government.
    5. Kuppusamy, Saravanan & Magazine, Michael J. & Rao, Uday, 2023. "Impact of downstream emissions cap-and-trade policy on electric vehicle and clean utility adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    6. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    7. Aghamohammadloo, Hossein & Talaeizadeh, Valiollah & Shahanaghi, Kamran & Aghaei, Jamshid & Shayanfar, Heidarali & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Integrated Demand Response programs and energy hubs retail energy market modelling," Energy, Elsevier, vol. 234(C).
    8. Zou, Peng & Chen, Qixin & Xia, Qing & He, Guannan & Kang, Chongqing & Conejo, Antonio J., 2016. "Pool equilibria including strategic storage," Applied Energy, Elsevier, vol. 177(C), pages 260-270.
    9. Coria, Jessica & Sterner, Thomas, 2008. "Tradable Permits in Developing Countries: Evidence from Air Pollution in Santiago, Chile," RFF Working Paper Series dp-08-51, Resources for the Future.
    10. Hermeling, Claudia & Klement, Jan Henrik & Koesler, Simon & Köhler, Jonathan & Klement, Dorothee, 2015. "Sailing into a dilemma," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 34-53.
    11. Xiang-Yu Wang & Bao-Jun Tang, 2018. "Review of comparative studies on market mechanisms for carbon emission reduction: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1141-1162, December.
    12. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    13. Sims, Katharine R.E. & Alix-Garcia, Jennifer M., 2017. "Parks versus PES: Evaluating direct and incentive-based land conservation in Mexico," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 8-28.
    14. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    15. Stavins, Robert, 2001. "Lessons From the American Experiment With Market-Based Environmental Policies," RFF Working Paper Series dp-01-53, Resources for the Future.
    16. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    17. Gavan Dwyer & Robert Douglas & Deb Peterson & Jo Chong & Kate Maddern, 2006. "Irrigation externalities: pricing and charges," Staff Working Papers 0603, Productivity Commission, Government of Australia.
    18. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    19. Stefan Scholtes, 2004. "Nonconvex Structures in Nonlinear Programming," Operations Research, INFORMS, vol. 52(3), pages 368-383, June.
    20. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    21. B Kelsey Jack, 2009. "Auctioning Conservation Contracts in Indonesia - Participant Learning in Multiple Trial Rounds," CID Working Papers 35, Center for International Development at Harvard University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2228-2245:d:34904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.