IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2345-d1648922.html
   My bibliography  Save this article

Industry 5.0 and Human-Centered Energy System: A Comprehensive Review with Socio-Economic Viewpoints

Author

Listed:
  • Jin-Li Hu

    (Institute of Business and Management, National Yang Ming Chiao Tung University, Taipei City 10044, Taiwan)

  • Yang Li

    (National Taiwan College of Performing Arts, Taipei City 11464, Taiwan)

  • Jung-Chi Chew

    (Institute of Business and Management, National Yang Ming Chiao Tung University, Taipei City 10044, Taiwan)

Abstract

Industry 5.0 transforms industrial ecosystems via artificial intelligence (AI), human–machine collaboration, and sustainability-focused innovations. This systematic literature review examines Industry 5.0′s role in energy transition through digital transformation, sustainable supply chains, and energy efficiency strategies. Key findings highlight AI-driven smart grids, blockchain-enabled energy transactions, and digital twin simulations as enablers of low-carbon, adaptive industrial operations. This review uniquely integrates technological, managerial, and policy perspectives, providing actionable insights for policymakers and industry leaders. Industry 5.0 enhances innovative energy management, renewable energy integration, and flexible energy distribution, strengthening resilience and sustainability. It fosters environmental responsibility, social impact, and circular economy principles, laying the foundation for a low-carbon economy and accelerating the global energy transition.

Suggested Citation

  • Jin-Li Hu & Yang Li & Jung-Chi Chew, 2025. "Industry 5.0 and Human-Centered Energy System: A Comprehensive Review with Socio-Economic Viewpoints," Energies, MDPI, vol. 18(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2345-:d:1648922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pietro De Giovanni, 2023. "Sustainability of the Metaverse: A Transition to Industry 5.0," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    2. Marek Szelągowski & Justyna Berniak-Woźny & Piotr Sliż & Natalia Potoczek & Aneta Napieraj & Marta Podobińska-Staniec & Piotr Senkus, 2024. "Exploring the diverse nature of business processes in organisations in Industry 4.0/5.0," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    3. Elias G. Carayannis & David F. J. Campbell & Evangelos Grigoroudis, 2021. "Democracy and the Environment: How Political Freedom Is Linked with Environmental Sustainability," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    4. Yong Yin & Kathryn E. Stecke & Dongni Li, 2018. "The evolution of production systems from Industry 2.0 through Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 848-861, January.
    5. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    6. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    7. Adel Ben Youssef & Issam Mejri, 2023. "Linking Digital Technologies to Sustainability through Industry 5.0: A bibliometric Analysis," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    8. Ravi Shankar & Laxmi Gupta, 2024. "Modelling risks in transition from Industry 4.0 to Industry 5.0," Annals of Operations Research, Springer, vol. 342(2), pages 1275-1320, November.
    9. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    10. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    11. Best, Rohan, 2017. "Switching towards coal or renewable energy? The effects of financial capital on energy transitions," Energy Economics, Elsevier, vol. 63(C), pages 75-83.
    12. Gatto, Andrea & Drago, Carlo, 2020. "Measuring and modeling energy resilience," Ecological Economics, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Titz, Maurizio & Pütz, Sebastian & Witthaut, Dirk, 2024. "Identifying drivers and mitigators for congestion and redispatch in the German electric power system with explainable AI," Applied Energy, Elsevier, vol. 356(C).
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    4. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    5. Liu, Yongtuan & Wang, Kewei, 2024. "Asymmetric impacts of coal prices, fintech, and financial stress on clean energy stocks," Resources Policy, Elsevier, vol. 92(C).
    6. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    9. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    10. Kashyap, Abhishek & Shukla, Om Ji & Kumar, Rupesh & Alam, Md Mahmudul & Oberoi, Sarbjit Singh, 2025. "Online retailing and the metaverse: Addressing stakeholder impediments in e-commerce," Journal of Retailing and Consumer Services, Elsevier, vol. 84(C).
    11. Lili Wang & Min Li & Guanbin Kong & Haiwen Xu, 2024. "Joint decision-making for divisional seru scheduling and worker assignment considering process sequence constraints," Annals of Operations Research, Springer, vol. 338(2), pages 1157-1185, July.
    12. Anna Marciniuk-Kluska & Mariusz Kluska, 2025. "Energy Recovery from Municipal Biodegradable Waste in a Circular Economy," Energies, MDPI, vol. 18(9), pages 1-17, April.
    13. Krupa, Joel & Harvey, L.D. Danny, 2017. "Renewable electricity finance in the United States: A state-of-the-art review," Energy, Elsevier, vol. 135(C), pages 913-929.
    14. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    15. Drago, Carlo & Gatto, Andrea, 2022. "Policy, regulation effectiveness, and sustainability in the energy sector: A worldwide interval-based composite indicator," Energy Policy, Elsevier, vol. 167(C).
    16. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    17. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    18. Sampene, Agyemang Kwasi & Li, Cai & Wiredu, John, 2024. "An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance," Energy Policy, Elsevier, vol. 187(C).
    19. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    20. Maref M. F. Alokshe & Muri Wole Adedokun & Kolawole Iyiola, 2025. "Advanced manufacturing technologies, strategic agility, business network and sustained competitive performance: an empirical evidence from an emerging economy," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-16, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2345-:d:1648922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.